cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272139 Numbers n such that Bernoulli number B_{n} has denominator 1806.

Original entry on oeis.org

42, 294, 798, 1806, 2058, 2814, 2982, 4074, 4578, 5334, 5586, 6594, 6846, 8106, 8274, 8358, 9366, 9534, 12642, 12894, 13314, 14154, 14658, 15162, 17178, 18186, 19194, 20118, 20454, 21882, 21966, 22722, 22974, 23982, 25914, 26502, 27006, 28266, 28518, 29778
Offset: 1

Views

Author

Paolo P. Lava, Apr 21 2016

Keywords

Comments

1806 = 2 * 3 * 7 * 43.
All terms are multiple of a(1) = 42.
For these numbers numerator(B_{n}) mod denominator(B_{n}) = 1.
In 2005, B. C. Kellner proved E. W. Weisstein's conjecture that denom(B_n) = n only if n = 1806.

Examples

			Bernoulli B_{42} is 1520097643918070802691/1806, hence 42 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,1806);
  • Mathematica
    Select[Range[0, 1000], Denominator[BernoulliB[#]] == 1806 &] (* Robert Price, Apr 21 2016 *)
    Select[Range[42,30000,42],Denominator[BernoulliB[#]]==1806&] (* Harvey P. Dale, Jun 01 2019 *)
  • PARI
    lista(nn) = for(n=1, nn, if(denominator(bernfrac(n)) == 1806, print1(n, ", "))); \\ Altug Alkan, Apr 22 2016

Extensions

More terms from Altug Alkan, Apr 22 2016