A272142 Numbers such that the concatenation of their aliquot parts, in descending order, are prime numbers.
8, 9, 10, 26, 34, 35, 49, 55, 56, 57, 62, 63, 75, 76, 77, 94, 95, 115, 122, 125, 142, 144, 146, 161, 169, 183, 194, 196, 203, 206, 219, 226, 235, 238, 254, 262, 265, 274, 275, 278, 290, 299, 302, 304, 305, 309, 320, 322, 332, 336, 338, 346, 355, 358, 361, 362
Offset: 1
Examples
Aliquot parts of 8 are 1, 2, 4 and concat(4,2,1) = 421 is prime; aliquot parts of 1822 are 1, 2, 911 and concat(911,2,1) = 91121 is prime.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): P:= proc(q) local a,b,k,n; for n from 1 to q do a:=sort([op(divisors(n))]); b:=0; for k from nops(a)-1 by -1 to 1 do b:=b*10^(ilog10(a[k])+1)+a[k]; od; if isprime(b) then print(n); fi; od; end: P(10^9);
-
Mathematica
Select[Range@ 362, PrimeQ@ FromDigits@ Flatten@ IntegerDigits@ Reverse@ Most@ Divisors@ # &] (* Michael De Vlieger, Apr 21 2016 *)