cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A272094 a(n) = Product_{k=0..n} binomial(k^2,k).

Original entry on oeis.org

1, 1, 6, 504, 917280, 48735086400, 94925811409228800, 8154182636726616909619200, 36091760791026276649159689107865600, 9415901310649088228943246038670339934863360000, 162992165498634702043940163611264755298214594247272038400000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 20 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[k^2, k], {k, 0, n}], {n, 0, 10}]

Formula

a(n) = A255322(n) / (A272168(n) * A000178(n)).
a(n) ~ c1/c2 * A * exp(-1/12 + n/2 + n^2/4) * n^(1/12 + n^2/2) / (2*Pi)^(n/2), where c1 = Product_{k>=1} (k^2)!/stirling(k^2) = 1.14426047263759216966268786..., c2 = Product_{k>=2} (k*(k-1))!/stirling(k*(k-1)) = 1.086533635964823338078329..., stirling(n) = sqrt(2*Pi*n) * n^n / exp(n) is the Stirling approximation of n!, and A = A074962 is the Glaisher-Kinkelin constant.

A272167 a(n) = Product_{k=2..n} (k^2-k)^k.

Original entry on oeis.org

1, 4, 864, 17915904, 57330892800000, 41794220851200000000000, 9635211808655307020697600000000000, 931891782579353562478377930946353561600000000000, 48457159197906991133853954271145046614004301737177907200000000000
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[(k^2-k)^k, {k, 2, n}], {n, 1, 10}]
    Table[n^n * Gamma[n]^(2*n-1) / BarnesG[n]^2, {n,1,10}] (* Vaclav Kotesovec, Apr 21 2024 *)
  • PARI
    a(n) = prod(k=2, n, (k^2-k)^k); \\ Michel Marcus, Nov 18 2021

Formula

a(n) ~ A^2 * sqrt(2*Pi) * n^(n^2 + n - 1/3) / exp(n*(n+2)/2), where A = A074962 is the Glaisher-Kinkelin constant.
a(n) = n^n * Gamma(n)^(2*n-1) / BarnesG(n)^2. - Vaclav Kotesovec, Apr 21 2024

Extensions

Definition corrected by Georg Fischer, Nov 18 2021
Showing 1-2 of 2 results.