A272183 Numbers n such that Bernoulli number B_{n} has denominator 330.
20, 340, 1220, 1420, 2020, 2980, 3340, 3940, 4460, 4540, 4580, 5140, 5660, 5780, 6260, 6340, 6620, 6940, 7060, 7580, 7660, 7780, 7940, 8020, 8980, 9140, 9260, 9580, 10420, 10820, 11140, 11380, 11740, 12140, 12340, 12860, 13220, 13540, 14020, 15020, 15140, 15740, 15940, 16540, 16780
Offset: 1
Keywords
Examples
Bernoulli B_{20} is -174611/330, hence 20 is in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q,h) local n; for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,330);
-
Mathematica
Select[20 Range@ 850, Denominator@ BernoulliB@ # == 330 &] (* Michael De Vlieger, Apr 29 2016 *)
-
PARI
isok(n) = denominator(bernfrac(n)) == 330; \\ Michel Marcus, Apr 22 2016
Extensions
a(15)-a(29) from Michel Marcus, Apr 22 2016
a(30)-a(45) from Altug Alkan, Apr 22 2016
Comments