A272190 Either 6th power of a prime, or product of the square of two different primes.
36, 64, 100, 196, 225, 441, 484, 676, 729, 1089, 1156, 1225, 1444, 1521, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4761, 5476, 5929, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 11236, 12321, 13225, 13924, 14161, 14884, 15129, 15625, 16641, 17689, 17956, 19881
Offset: 1
Examples
36 = 2^2 * 3^2; 64 = 2^6.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..200 from Paolo P. Lava)
Programs
-
Maple
with(numtheory): P:=proc(q) local a,k,n; for n from 2 to q do a:=sort([op(divisors(n))]); if 3*tau(n)= add(tau(a[k]),k=1..nops(a)-1) then print(n); fi; od; end: P(10^7);
-
Mathematica
Select[Range[20000], MemberQ[{{6}, {2, 2}}, FactorInteger[#][[;; , 2]]] &] (* Amiram Eldar, Oct 03 2023 *)
-
PARI
isok(n) = 3*numdiv(n) == sumdiv(n, d, (n!=d)*numdiv(d)); \\ Michel Marcus, Apr 22 2016
-
PARI
is(n) = {my(e = factor(n)[, 2]~); e == [6] || e == [2, 2];} \\ Amiram Eldar, Oct 03 2023
Formula
Sum_{n>=1} 1/a(n) = (P(2)^2 - P(4))/2 + P(6) = (A085548^2 - A085964)/2 + A085966 = 0.080837..., where P is the prime zeta function. - Amiram Eldar, Oct 03 2023
Comments