cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272191 Either 8th power of a prime, or product of a square and a cube of two different primes.

Original entry on oeis.org

72, 108, 200, 256, 392, 500, 675, 968, 1125, 1323, 1352, 1372, 2312, 2888, 3087, 3267, 4232, 4563, 5324, 6125, 6561, 6728, 7688, 7803, 8575, 8788, 9747, 10952, 11979, 13448, 14283, 14792, 15125, 17672, 19652, 19773, 21125, 22472, 22707, 25947, 27436, 27848, 29768
Offset: 1

Views

Author

Paolo P. Lava, Apr 22 2016

Keywords

Comments

Numbers such that the sum of the number of divisors of their aliquot parts is four times the number of their divisors.

Examples

			72 = 2^3 * 3^2;  256 = 2^8.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;  for n from 2 to q do a:=sort([op(divisors(n))]);
    if 4*tau(n)= add(tau(a[k]),k=1..nops(a)-1) then print(n); fi; od; end: P(10^7);
  • Mathematica
    Select[Range[30000], MemberQ[{{8}, {2, 3}}, Sort[FactorInteger[#][[;; , 2]]]] &] (* Amiram Eldar, Oct 03 2023 *)
  • PARI
    isok(n) = 4*numdiv(n) == sumdiv(n, d, (n!=d)*numdiv(d)); \\ Michel Marcus, Apr 22 2016
    
  • PARI
    is(n) = {my(e = vecsort(factor(n)[, 2])~); e == [8] || e == [2, 3];} \\ Amiram Eldar, Oct 03 2023

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(3) - P(5) + P(8) = A085548 * A085541 - A085965 + A085968 = 0.047342..., where P is the prime zeta function. - Amiram Eldar, Oct 03 2023