A272191 Either 8th power of a prime, or product of a square and a cube of two different primes.
72, 108, 200, 256, 392, 500, 675, 968, 1125, 1323, 1352, 1372, 2312, 2888, 3087, 3267, 4232, 4563, 5324, 6125, 6561, 6728, 7688, 7803, 8575, 8788, 9747, 10952, 11979, 13448, 14283, 14792, 15125, 17672, 19652, 19773, 21125, 22472, 22707, 25947, 27436, 27848, 29768
Offset: 1
Examples
72 = 2^3 * 3^2; 256 = 2^8.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): P:=proc(q) local a,k,n; for n from 2 to q do a:=sort([op(divisors(n))]); if 4*tau(n)= add(tau(a[k]),k=1..nops(a)-1) then print(n); fi; od; end: P(10^7);
-
Mathematica
Select[Range[30000], MemberQ[{{8}, {2, 3}}, Sort[FactorInteger[#][[;; , 2]]]] &] (* Amiram Eldar, Oct 03 2023 *)
-
PARI
isok(n) = 4*numdiv(n) == sumdiv(n, d, (n!=d)*numdiv(d)); \\ Michel Marcus, Apr 22 2016
-
PARI
is(n) = {my(e = vecsort(factor(n)[, 2])~); e == [8] || e == [2, 3];} \\ Amiram Eldar, Oct 03 2023
Formula
Sum_{n>=1} 1/a(n) = P(2)*P(3) - P(5) + P(8) = A085548 * A085541 - A085965 + A085968 = 0.047342..., where P is the prime zeta function. - Amiram Eldar, Oct 03 2023
Comments