A272164
a(n) = Product_{k=0..n} (n^2-k)!.
Original entry on oeis.org
1, 1, 288, 53094139822080000, 7114507432973653690572666462301501337370624000000000000
Offset: 0
-
Table[Product[(n^2-k)!, {k, 0, n}], {n, 0, 6}]
Table[BarnesG[n^2 + 2]/BarnesG[n^2 - n + 1], {n, 0, 6}]
A272180
a(n) = Product_{k=0..n} (n^2 + k).
Original entry on oeis.org
0, 2, 120, 11880, 1860480, 427518000, 135970773120, 57274321104000, 30885807297945600, 20759078324729606400, 17018214378110225280000, 16716468557742686853120000, 19383353274717848149493760000, 26198415087179810897268887040000, 40828604361516687201839617904640000
Offset: 0
-
Table[Product[n^2 + k, {k, 0, n}], {n, 0, 15}]
Table[n^2*Pochhammer[1 + n^2, n], {n, 0, 15}]
A272241
a(n) = Product_{k=0..n} ((n^2 + k)! / (n^2 - k)!).
Original entry on oeis.org
1, 2, 7200, 474211584000, 1981999450972492922880000, 1401219961854040654113268364083200000000000, 370389015130516478011776928922387124162707119541939129548800000000
Offset: 0
-
Table[Product[(n^2+k)!/(n^2-k)!,{k,0,n}],{n,0,7}]
Table[BarnesG[n^2 - n + 1]*BarnesG[n^2 + n + 2]/(BarnesG[n^2 + 2]*BarnesG[n^2 + 1]), {n, 0, 6}]
A272237
a(n) = Product_{k=0..n} (n^2+k)^k.
Original entry on oeis.org
2, 180, 2090880, 6044699520000, 7151106328088486400000, 5159620144413185246982598164480000, 3167269298042065159436486399933762922086400000000, 2200712918907364598767850489247066133407004510957047455416320000000
Offset: 1
-
Table[Product[(n^2+k)^k, {k, 0, n}], {n, 1, 10}]
Table[((n^2+n)!)^(n+1) * BarnesG[n^2 + 1] / BarnesG[n^2 + n + 2], {n, 1, 10}]
Showing 1-4 of 4 results.
Comments