A272164
a(n) = Product_{k=0..n} (n^2-k)!.
Original entry on oeis.org
1, 1, 288, 53094139822080000, 7114507432973653690572666462301501337370624000000000000
Offset: 0
-
Table[Product[(n^2-k)!, {k, 0, n}], {n, 0, 6}]
Table[BarnesG[n^2 + 2]/BarnesG[n^2 - n + 1], {n, 0, 6}]
A272095
a(n) = Product_{k=0..n} binomial(n^2,k).
Original entry on oeis.org
1, 1, 24, 27216, 1956864000, 11593630125000000, 7004354761049263478784000, 515246658615545697034849051407876096, 5368556637668593177532650186945239827409750982656, 9038577429104951379916309583338181472480254559457860096000000000
Offset: 0
-
Table[Product[Binomial[n^2, k], {k, 0, n}], {n, 0, 10}]
Table[((n^2)!)^(n+1) * BarnesG[n^2 - n + 1] / (BarnesG[n^2 + 2] * BarnesG[n+2]), {n, 0, 10}]
A272238
a(n) = Product_{k=0..n} (n^2+k)!.
Original entry on oeis.org
1, 2, 2073600, 25177856146146034974720000000, 14100949826093501607549529280892932893801777581548587107609477120000000000000000
Offset: 0
-
Table[Product[(n^2+k)!, {k, 0, n}], {n, 0, 6}]
Table[BarnesG[n^2 + n + 2]/BarnesG[n^2 + 1], {n, 0, 6}]
A371642
a(n) = Product_{k=0..n} (n^2 + k^2)! / (n^2 - k^2)!.
Original entry on oeis.org
1, 2, 806400, 29900785676206001356800000, 1118776785681133797769642926006209350326602179759885516800000000000000
Offset: 0
-
Table[Product[(n^2+k^2)!/(n^2-k^2)!, {k, 0, n}], {n, 0, 6}]
Showing 1-4 of 4 results.
Comments