A272240 Least positive integer c such that (n, c-n, c) is an abc-hit and n is the least number in the triple.
9, 245, 128, 125, 32, 214375, 250, 1331, 2057, 2197, 2187, 5021875, 256, 658503, 85184, 6875, 5120, 148046893, 6144, 19683, 327701, 23882769, 2048, 1830125, 729, 3536405, 539, 50653, 19712, 75926359382399, 19683, 81, 2000033, 793071909, 4131, 313046875, 32805
Offset: 1
Keywords
Examples
a(8) = 1331 because rad(8*1323*1331) = 2*21*11 = 462 < 1331, hence (8, 1323, 1331) is an abc-hit and (8, c-8, c) isn't an abc-hit for every c satisfying unequalities c < 1331 and 8 < c-8.
Links
- Wikipedia, abc conjecture
Crossrefs
Programs
-
Maple
rad:=n -> mul(i,i in factorset(n)): min_c_for_a:=proc(n) local a,b,c,ra,rc; for a to n do ra:=rad(a): for c from 2*a+1 do if igcd(a,c)=1 then rc:=rad(c): if ra*rc
Extensions
More terms from Jinyuan Wang, Jun 08 2022
Comments