A272328 Number of integers 1<=k<=n such that phi(n)=phi(n+k) where phi is Euler's totient function A000010.
1, 0, 2, 1, 2, 0, 2, 2, 2, 1, 1, 0, 2, 1, 4, 3, 2, 0, 2, 2, 4, 0, 1, 1, 3, 3, 2, 2, 1, 0, 1, 4, 3, 3, 5, 1, 3, 1, 6, 2, 3, 0, 2, 2, 7, 0, 1, 1, 2, 1, 5, 6, 1, 0, 5, 5, 5, 0, 1, 0, 4, 0, 5, 5, 4, 0, 1, 4, 2, 4, 1, 3, 6, 4, 6, 3, 5, 2, 1, 3, 1, 5, 1, 1, 4, 1, 2
Offset: 1
Keywords
Examples
For n=2: phi(2) = 1; whereas phi(2+1) = 2 and phi(2+2) = 2. Thus a(2) = 0. For n=5: phi(5) = 4, phi(5+1)=2, phi(5+2)=6, phi(5+3) = 4, phi(5+4) = 6, and phi(5+5) = 4. Since phi(5) = phi(5+3) = phi(5+5), a(5) = 2.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Count[Range@ n, k_ /; EulerPhi@ n == EulerPhi[n + k]], {n, 120}] (* Michael De Vlieger, Apr 25 2016 *)
-
PARI
a(n) = my(x=eulerphi(n)); sum(k=1, n, eulerphi(n+k) == x); \\ Michel Marcus, Mar 08 2020
-
Python
from sympy import totient nmax = 10**4 philist = [totient(i) for i in range(1,2*nmax+1)] A272328_list = [philist[i+1:2*(i+1)].count(philist[i]) for i in range(nmax)] # Chai Wah Wu, Apr 26 2016
-
Sage
[sum([1 for k in [1..n] if euler_phi(n)==euler_phi(n+k)]) for n in [1..1000]]
Comments