cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272337 Numbers such that antisigma(n) mod sigma(n) = d(n), where antisigma(n) is the sum of the numbers less than n that do not divide n, sigma(n) is the sum of the divisors of n and d(n) is the number of divisors of n.

Original entry on oeis.org

3, 4, 52, 164, 275, 332, 388, 556, 668, 724, 892, 1004, 1172, 1228, 1396, 1676, 1732, 1844, 2012, 2348, 2404, 2572, 2908, 3076, 3188, 3244, 3356, 3412, 3524, 3748, 4084, 4196, 4252, 4364, 4868, 4924, 5036, 5204, 5596, 5708, 5932, 6044, 6212, 6268, 6436, 6548
Offset: 1

Views

Author

Paolo P. Lava, Apr 26 2016

Keywords

Examples

			52*53/2 mod sigma(52) = 1378 mod 98 = 6 = d(52).
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local n;
    for n from 1 to q do if (n*(n+1)/2) mod sigma(n)=tau(n) then print(n); fi;
    od; end: P(10^6);
  • Mathematica
    Select[Range@ 6600, Function[n, Mod[Total@ First@ #, Total@ Last@ #] == Length@ Last@ # &@ {Complement[Range@ n, #], #} &@ Divisors@ n]] (* faster, or *)
    Select[Range@ 6600, Mod[Total[Select[Range[# - 1], Function[m, ! Divisible[#, m]]]], DivisorSigma[1, #]] == DivisorSigma[0, #] &] (* Michael De Vlieger, Apr 27 2016 *)
  • PARI
    isok(n) = n*(n+1)/2 % sigma(n) == numdiv(n); \\ Michel Marcus, Apr 29 2016

Formula

Solutions of the equation A024816(n) mod A000203(n) = A000005(n).