A272337 Numbers such that antisigma(n) mod sigma(n) = d(n), where antisigma(n) is the sum of the numbers less than n that do not divide n, sigma(n) is the sum of the divisors of n and d(n) is the number of divisors of n.
3, 4, 52, 164, 275, 332, 388, 556, 668, 724, 892, 1004, 1172, 1228, 1396, 1676, 1732, 1844, 2012, 2348, 2404, 2572, 2908, 3076, 3188, 3244, 3356, 3412, 3524, 3748, 4084, 4196, 4252, 4364, 4868, 4924, 5036, 5204, 5596, 5708, 5932, 6044, 6212, 6268, 6436, 6548
Offset: 1
Examples
52*53/2 mod sigma(52) = 1378 mod 98 = 6 = d(52).
Programs
-
Maple
with(numtheory): P:=proc(q) local n; for n from 1 to q do if (n*(n+1)/2) mod sigma(n)=tau(n) then print(n); fi; od; end: P(10^6);
-
Mathematica
Select[Range@ 6600, Function[n, Mod[Total@ First@ #, Total@ Last@ #] == Length@ Last@ # &@ {Complement[Range@ n, #], #} &@ Divisors@ n]] (* faster, or *) Select[Range@ 6600, Mod[Total[Select[Range[# - 1], Function[m, ! Divisible[#, m]]]], DivisorSigma[1, #]] == DivisorSigma[0, #] &] (* Michael De Vlieger, Apr 27 2016 *)
-
PARI
isok(n) = n*(n+1)/2 % sigma(n) == numdiv(n); \\ Michel Marcus, Apr 29 2016