A272349 Least multiple of n whose sum of divisors is divisible by n.
1, 6, 6, 12, 40, 6, 28, 56, 90, 40, 473, 24, 117, 28, 120, 336, 1139, 90, 703, 120, 420, 946, 3151, 120, 3725, 234, 918, 28, 5017, 120, 496, 672, 891, 2176, 2660, 792, 2701, 1406, 234, 120, 6683, 420, 11051, 1892, 270, 6302, 13207, 528, 2548, 3800, 3417, 2340
Offset: 1
Keywords
Examples
For n = 2, a(2) = 6 because it is the smallest number divisible by 2 whose sum of divisors (12) is also divisible by 2; 3 and 5 are not divisible by 2 and the sum of divisors of 2 and 4 is 3 and 7, hence also not divisible by 2.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A272349 := proc(n) local k; for k from 1 do if modp(numtheory[sigma](k*n),n) =0 then return k*n; end if; end do: end proc: # R. J. Mathar, May 02 2016
-
Mathematica
A272349 = {}; Do[k = n; While[!(Divisible[k, n] && Divisible[DivisorSigma[1, k], n]), k++]; AppendTo[A272349, k], {n, 65}]; A272349
-
PARI
for(n=1, 65, k=n; while(!(k%n==0&&sigma(k)%n==0), k++); print1(k ", "))
-
PARI
a(n)=my(k=n); while(sigma(k)%n,k+=n); k \\ Charles R Greathouse IV, Apr 28 2016
Formula
a(n) = n*A227470(n). - R. J. Mathar, May 02 2016
Comments