cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272395 Degeneracies of entanglement witness eigenstates for n spin 5 irreducible representations.

Original entry on oeis.org

1, 0, 1, 1, 11, 76, 671, 5916, 54131, 504316, 4779291, 45898975, 445798221, 4371237794, 43213522209, 430241859971, 4310236148075, 43417944574136, 439495074016427, 4468208369691396, 45605656313488271, 467140985042718910
Offset: 0

Views

Author

Gheorghe Coserea, Apr 28 2016

Keywords

Comments

The Mathematica formula for a(n) as the difference of two generalized binomial coefficients is adapted from the Appendix of the Mendonça link. - Thomas Curtright, Jul 27 2016

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, A272391, A264608, A272392, A272393, A272394, this sequence.

Programs

  • Mathematica
    a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*(1024t^5-2304t^4+1792t^3-560t^2 +60t-1)^n, {t, 0, 1}] (* Thomas Curtright, Jun 24 2016 *)
    a[n_]:= c[0, n, 5]-c[1, n, 5]
    c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s],{k, 0, Floor[(j + n*s)/(2*s + 1)]}] (* Thomas Curtright, Jul 26 2016 *)
    a[n_]:= mult[0, n, 5]
    mult[j_,n_,s_]:=Sum[(-1)^(k+1)*Binomial[n,k]*Binomial[n*s+j-(2*s+1)*k+n- 1,n*s+j-(2*s+1)*k+1],{k,0,Floor[(n*s+j+1)/(2*s+1)]}] (* Thomas Curtright, Jun 14 2017 *)
  • PARI
    N = 22; S = 5;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) =  { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0))
    
  • PARI
    c(j, n) = sum(k=0, min((j + 5*n)\11, n), (-1)^k*binomial(n, k)*binomial(j - 11*k + n + 5*n - 1, j - 11*k + n*5))
    a(n)=c(0, n)-c(1, n) \\ Charles R Greathouse IV, Jul 28 2016; adapted from Curtright's Mathematica code

Formula

a(n)=(1/Pi)*int((sin(11x)/sin(x))^n*(sin(x))^2,x,0,2Pi). - Thomas Curtright, Jun 24 2016
a(n) ~ (1/20)^(3/2)*11^n/(sqrt(Pi)*n^(3/2))(1-63/(80n)+O(1/n^2)). - Thomas Curtright, Jul 26 2016