A272397 Number of partitions of n into parts congruent to 1, 3, 6, 8 (mod 9).
1, 1, 1, 2, 2, 2, 4, 4, 5, 7, 8, 9, 13, 14, 16, 21, 24, 27, 35, 39, 45, 55, 62, 70, 86, 96, 109, 130, 146, 164, 195, 217, 245, 285, 319, 357, 415, 461, 517, 592, 660, 735, 840, 931, 1038, 1175, 1304, 1446, 1634, 1805, 2002, 2246, 2482, 2742, 3070, 3381, 3734
Offset: 0
Keywords
Examples
For n=10, the a(10)=8 partitions are 10, 8+1+1, 6+3+1, 6+1+1+1, 3+3+3+1, 3+3+1+1+1+1. 3+1+1+1+1+1+1+1, and 1+1+1+1+1+1+1+1+1+1. For the conjectured "sum side", the a(10)=8 partitions are 10, 9+1, 8+2, 7+3, 7+2+1, 6+4, 6+3+1, and 5+4+1.
Links
- S. Kanade and M. C. Russell, IdentityFinder and some new identities of Rogers-Ramanujan type, Exp. Math. 24:4 (2015), pp. 419-423.
Crossrefs
Cf. A000726: partitions of 3n into parts == {3,6} mod 9.
Programs
-
Mathematica
Table[Length@ Select[IntegerPartitions@ n, AllTrue[Mod[#, 9], MemberQ[{1, 3, 6, 8}, #] &] &], {n, 0, 50}] (* Michael De Vlieger, Apr 28 2016, Version 10 *)
Comments