cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272436 Semiprimes such that sum of digits equals product of digits.

Original entry on oeis.org

4, 6, 9, 22, 123, 213, 321, 1142, 1214, 1241, 4121, 11215, 11521, 12115, 12151, 21151, 22121, 51211, 111261, 112611, 116121, 116211, 121161, 162111, 211611, 261111, 621111, 1111217, 1111413, 1111431, 1111721, 1112117, 1117121, 1117211, 1121117, 1121171, 1121711
Offset: 1

Views

Author

K. D. Bajpai, May 06 2016

Keywords

Comments

Intersection of A001358 and A034710.
9 is the only member with digit 9. No member has more than one digit 3 or 6. - Robert Israel, May 06 2016

Examples

			1142 appears in the list because 1142 = 2*571 that is semiprime. Also, 1+1+4+2 = 8 = 1*1*4*2.
11215 appears in the list because 1142 = 5*2243 that is semiprime. Also, 1+1+2+1+5 = 10 = 1*1*2*1*5.
		

Crossrefs

Programs

  • Maple
    R:= proc(k,d,u,v) option remember;
        if k = 1 then
            if d = v - u then {[d]}
            else {}
            fi
        else
          `union`(seq(map(t -> [op(t),s], procname(k-1,d-s,u+s*k,v*k^s)),s=0..d))
        fi
    end proc:
    A034710:= proc(d)
      local res, r,  i, t;
      res:= NULL;
      for r in R(9,d,0,1) do
         res:= res, op(map(t -> add(10^(i-1)*t[i],i=1..nops(t)), combinat:-permute([seq(i$r[i],i=1..9)])));
      od:
      sort([res]);
    end proc:
    map(op, [seq(select(t -> numtheory:-bigomega(t)=2, A034710(i)),i=1..11)]); # Robert Israel, May 06 2016
  • Mathematica
    Select[Range[10000000], (Plus @@ IntegerDigits[#]) == (Times @@ IntegerDigits[#]) && PrimeOmega[#] == 2 &]