A272436 Semiprimes such that sum of digits equals product of digits.
4, 6, 9, 22, 123, 213, 321, 1142, 1214, 1241, 4121, 11215, 11521, 12115, 12151, 21151, 22121, 51211, 111261, 112611, 116121, 116211, 121161, 162111, 211611, 261111, 621111, 1111217, 1111413, 1111431, 1111721, 1112117, 1117121, 1117211, 1121117, 1121171, 1121711
Offset: 1
Examples
1142 appears in the list because 1142 = 2*571 that is semiprime. Also, 1+1+4+2 = 8 = 1*1*4*2. 11215 appears in the list because 1142 = 5*2243 that is semiprime. Also, 1+1+2+1+5 = 10 = 1*1*2*1*5.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..17009 (n = 1..3104 from Robert Israel)
Programs
-
Maple
R:= proc(k,d,u,v) option remember; if k = 1 then if d = v - u then {[d]} else {} fi else `union`(seq(map(t -> [op(t),s], procname(k-1,d-s,u+s*k,v*k^s)),s=0..d)) fi end proc: A034710:= proc(d) local res, r, i, t; res:= NULL; for r in R(9,d,0,1) do res:= res, op(map(t -> add(10^(i-1)*t[i],i=1..nops(t)), combinat:-permute([seq(i$r[i],i=1..9)]))); od: sort([res]); end proc: map(op, [seq(select(t -> numtheory:-bigomega(t)=2, A034710(i)),i=1..11)]); # Robert Israel, May 06 2016
-
Mathematica
Select[Range[10000000], (Plus @@ IntegerDigits[#]) == (Times @@ IntegerDigits[#]) && PrimeOmega[#] == 2 &]
Comments