cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272461 G.f. A(x) satisfies: A( x - A(x^4)/x^2 ) = x.

Original entry on oeis.org

1, 1, 2, 5, 14, 43, 140, 474, 1650, 5865, 21194, 77623, 287492, 1074915, 4051824, 15381073, 58749102, 225621404, 870686810, 3374625925, 13130575110, 51271434788, 200845390668, 789081913225, 3108496250028, 12275905239752, 48590260462470, 192736593501813, 766007363990640, 3049978926971396, 12164745517874576, 48596364360237882, 194426663474794450, 778968350863994065
Offset: 1

Views

Author

Paul D. Hanna, Apr 29 2016

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 43*x^6 + 140*x^7 + 474*x^8 + 1650*x^9 + 5865*x^10 + 21194*x^11 + 77623*x^12 +...
where A( x - A(x^4)/x^2 ) = x.
RELATED SERIES.
Let B(x) be the series reversion of the g.f. A(x) so that A(B(x)) = x, then
B(x) = x - x^2 - x^6 - 2*x^10 - 5*x^14 - 14*x^18 - 43*x^22 - 140*x^26 - 474*x^30 - 1650*x^34 - 5865*x^38 - 21194*x^42 - 77623*x^46 +...
such that B(x) = x - A(x^4)/x^2.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(i=1,n, A = serreverse( x - subst(A,x,x^4 +x^3*O(x^n))/x^2 )); polcoeff(A,n)}
    for(n=1,50,print1(a(n),", "))

Formula

a(n) ~ c * d^n / n^(3/2), where d = 4.1920029654932692520828... and c = 0.1046247209912855075794... . - Vaclav Kotesovec, May 03 2016