cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272473 Triangle T(n,m) by rows: the number of tatami tilings of a 4 by n grid with 2*m monomers.

Original entry on oeis.org

1, 3, 1, 4, 18, 7, 4, 27, 13, 2, 32, 32, 3, 52, 64, 7, 3, 62, 133, 40, 3, 99, 269, 110, 9, 5, 152, 437, 280, 48, 5, 163, 730, 669, 138, 9, 6, 258, 1243, 1318, 433, 48, 8, 343, 1823, 2670, 1239, 154, 9, 8, 408, 2949, 5240, 2849, 600, 48, 11, 632, 4577
Offset: 1

Views

Author

R. J. Mathar, Apr 30 2016

Keywords

Comments

The number of squares in the 4 by n floor is even, so the number of tilings with an odd number of monomers is zero.

Examples

			The triangle starts in row n=1 and column m=0 as:
1,3,1;
4,18,7;
4,27,13;
2,32,32;
3,52,64,7;
3,62,133,40;
3,99,269,110,9;
5,152,437,280,48;
5,163,730,669,138,9;
6,258,1243,1318,433,48;
8,343,1823,2670,1239,154,9;
8,408,2949,5240,2849,600,48;
11,632,4577,9011,6655,1927,172,9;
13,746,6287,16184,14697,4930,777,48;
14,971,9928,28135,28805,13089,2669,190,9;
19,1394,14234,44806,58022,32176,7501,954,48;
21,1610,19501,75702,111795,70427,22344,3445,208,9;
25,2224,29785,121302,199354,157078,59859,10576,1131,48;
32,2909,40073,184597,366553,331449,143611,34646,4257,226,9;
35,3464,55939,298278,644436,651772,350855,99300,14167,1308,48;
44,4820,81474,449995,1081033,1303651,802565,258303,50095,5105,244,9;
53,5924,106460,670726,1868914,2488996,1719501,684338,151835,18274,1485,48;
60,7408,150672,1040424,3077401,4548409,3716945,1678785,425017,68761,5989,262,9;
76,9972,208211,1503372,4956628,8434302,7641320,3879356,1208052,218806,22897,1662,48;
		

Crossrefs

Cf. A192090 (row sums), A068923 (column m=0), A272472 (3 by n grid), A100265 (without tatami condition, reversed rows).

Formula

G.f. x*( -1 -8*x^7*y^2 +21*x^5*y^2 -7*x^7*y^6 +4*x^3*y^2 -3*x^7 +2*x^5 -8*x^2*y^2 -4*x^8*y^4 -3*x -6*x*y^4 -15*x*y^2 -2*x^3*y^4 -6*x^8 -5*x^10*y^2 -5*x^9*y^2 -y^4 -2*x^8*y^2 -3*y^2 -8*x^11*y^2 +5*x^11*y^4 -3*x^2*y^4 -2*x^5*y^6 +2*x^13 +x^12 +x^11 +x^6 -7*x^7*y^4 +x^7*y^8 +11*x^4*y^2 -3*x^9 -15*x^10*y^4 -2*x^10*y^6 +18*x^9*y^4 +36*x^6*y^4 +20*x^6*y^2 -17*x^ 5*y^4 -8*x^4*y^4 +4*x^3 +8*x^6*y^6 +5*x^4 +2*x^9*y^6 -y^8*x^6 +6*y^6*x^3 +y^6*x^2)/ (x^11 -x^10 +2*x^9 -3*x^9*y^2 +x^8*y^2 -2*x^8 +x^7 +x^6*y^4 -5*x^6*y^2 -3*x^6 +2*x^5 +5*x^5*y^2 +x^4*y^2 -2*x^4 -x^3*y^2 +2*x^3 +x^2*y^2 +x -1). - R. J. Mathar, May 01 2016