cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A192090 Number of tatami tilings of a 4 X n grid (with monomers allowed).

Original entry on oeis.org

1, 5, 29, 44, 66, 126, 238, 490, 922, 1714, 3306, 6246, 12102, 22994, 43682, 83810, 159154, 305062, 581382, 1108362, 2119602, 4037338, 7716554, 14720142, 28084702, 53639778, 102298794, 195341594, 372753634, 711338798, 1357975774
Offset: 0

Views

Author

Frank Ruskey and Yuji Yamauchi (eugene.uti(AT)gmail.com), Jun 23 2011

Keywords

Comments

A tatami tiling consists of dimers (1 X 2) and monomers (1 X 1) where no four meet at a point.

Examples

			Here are some tatami tilings of the 4 X 3 grid:
    _ _ _ _   _ _ _ _   _ _ _ _   _ _ _ _
   |_ _| |_| |_| |_ _| | |_ _| | |_| |_ _|
   |_ _|_| | | |_|_ _| |_| |_|_| | |_|_ _|
   |_|_ _|_| |_|_ _|_| |_|_|_ _| |_|_ _|_|
		

Crossrefs

Cf. A180970, (3 X n grid), A192091 (5 X n grid), row sums of A272473.

Formula

G.f.: -13 + 3*x + 3*x^2 + 2*x^3 + (14 - 12*x + 10*x^2 + 10*x^4 - 104*x^5 + 114*x^6 - 80*x^7 + 34*x^8 + 12*x^9 - 2*x^10)/(1 - x - x^2 - x^3 + x^4 - 7*x^5 + 7*x^6 - x^7 + x^8 + x^9 + x^10 - x^11).

A068923 Number of ways to tile a 4 X n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

1, 4, 4, 2, 3, 3, 3, 5, 5, 6, 8, 8, 11, 13, 14, 19, 21, 25, 32, 35, 44, 53, 60, 76, 88, 104, 129, 148, 180, 217, 252, 309, 365, 432, 526, 617, 741, 891, 1049, 1267, 1508, 1790, 2158, 2557, 3057, 3666, 4347, 5215, 6223, 7404, 8881, 10570, 12619, 15104, 17974
Offset: 1

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Crossrefs

Cf. A068929 for incongruent tilings, A068920 for more info. First column of A272473.

Formula

For n >= 9, a(n) = a(n-3) + a(n-5).
G.f.: x*(x+1)*(2*x^6+x^5+x^4-x^2-3*x-1)/(-1+x^5+x^3) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009]

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.

A272474 Triangle T(n,m) by rows: the number of tatami tilings of the 5 X n floor with dimers and m monomers.

Original entry on oeis.org

0, 3, 0, 4, 0, 1, 6, 0, 35, 0, 26, 0, 1, 0, 18, 0, 56, 0, 16, 3, 0, 52, 0, 64, 0, 7, 0, 10, 0, 88, 0, 80, 2, 0, 60, 0, 182, 0, 81, 0, 8, 0, 160, 0, 320, 0, 96, 2, 0, 102, 0, 500, 0, 449, 0, 112, 0, 18, 0, 340, 0, 952, 0, 600, 0, 120, 4, 0, 184, 0, 1056
Offset: 1

Views

Author

R. J. Mathar, Apr 30 2016

Keywords

Examples

			The triangle starts in row n=1 and column m=0 as:
0,3,0,4,0,1;
6,0,35,0,26,0,1;
0,18,0,56,0,16;
3,0,52,0,64,0,7;
0,10,0,88,0,80;
2,0,60,0,182,0,81;
0,8,0,160,0,320,0,96;
2,0,102,0,500,0,449,0,112;
0,18,0,340,0,952,0,600,0,120;
4,0,184,0,1056,0,1535,0,712,0,128;
0,24,0,550,0,2216,0,2338,0,824,0,128;
4,0,246,0,2050,0,4367,0,3256,0,936,0,128;
0,32,0,936,0,5044,0,7728,0,4454,0,1040,0,128;
6,0,414,0,4054,0,11539,0,12360,0,5816,0,1160,0,128;
0,52,0,1658,0,10736,0,22410,0,18744,0,7352,0,1280,0,128;
8,0,620,0,7412,0,27039,0,39590,0,26576,0,9056,0,1408,0,128;
0,68,0,2596,0,21180,0,57296,0,65634,0,36312,0,10864,0,1536,0,128;
10,0,908,0,13022,0,59625,0,112526,0,102054,0,47954,0,12816,0,1664,0,128;
0,100,0,4312,0,41056,0,138444,0,204496,0,152648,0,61720,0,14872,0,1792,0,128;
14,0,1404,0,23112,0,126291,0,298136,0,347122,0,219228,0,77904,0,17056,0,1920,0,128;
0,142,0,6904,0,77136,0,314464,0,584236,0,560856,0,305264,0,96552,0,19360,0,2048,0,128;
18,0,2034,0,38898,0,254427,0,731536,0,1068766,0,863460,0,413418,0,117944,0,21792,0,2176,0,128;
0,196,0,10778,0,139276,0,678728,0,1537620,0,1850598,0,1282412,0,546464,0,142128,0,24352,0,2304,0,128;
24,0,3018,0,65388,0,496213,0,1704232,0,3026128,0,3048168,0,1843736,0,707754,0,169288,0,27040,0,2432,0,128;
		

Crossrefs

Cf. A192091 (row sums), A068924 (column m=0), A281791 (column m=1), A272473 (4 by n grid).

Formula

G.f. x*( -3*x^11*y^8 +7*x^4*y^7 +x^2*y^7 -24*x^6*y^7 -2*x^5*y^4 -y^5 -2*x^3*y^2 -16*x^9 -9*x^ 2*y +3*x^3 +13*x^5 +7*x^15 -6*x -3*y -22*x*y^4 -32*x*y^2 +16*x^11*y^6 -6*x^13*y^2 -14*x^ 15*y^4 +3*x^13 +14*x^5*y^6 -11*x^11 +6*x^7 -55*y^3*x^10 -17*x^2*y^3 +37*x^6*y -24*y^3*x^14 -48*x^10*y +2*x^17*y^2 -19*x^12*y -4*y^3 -55*x^12*y^3 -8*x^11*y^4 +51*x^8*y^5 +28*x^7*y^6 +72*x^6*y^3 +31*y^2*x^15 -58*x^13*y^4 +x^17 -64*x^11*y^2 +36*x^10*y^5 +55*x^8*y^3 -50*x^6*y^5 -4*x^4*y^3 -5*x^9*y^4 -5*x^8*y +60*y^2*x^5 +84*x^7*y^2 -12*x^9*y^6 +55*x^7*y^4 -2*x^12*y^5 -79*x^9*y^2 -2*x^16*y^3 +4*x^7*y^8 +11*x^4*y -20*x^4*y^5 +6*x^13*y^ 6 +15*x^16*y +17*x^14*y^5 -5*x^10*y^7 -26*x^8*y^7 +x^8*y^9 +21*y*x^14 +11*x^2*y^5 +x^7* y^10 -x^10*y^9 +14*x^3*y^4 +9*x^3*y^6 -5*y^7*x^12 +3*x^9*y^8) / (x^14 +x^13*y +x^12 -2*x^ 12*y^2 -x^11*y^3 -2*x^10*y^2 -x^10 -x^9*y^3 +x^8*y^4 -3*x^8 -3*x^8*y^2 -x^7*y -x^7*y^3 +x^6*y^4 +4*x^6*y^2 -y^3*x^5 +2*x^4 +y^2*x^4 -x^3*y +x^2 +x*y -1). - R. J. Mathar, May 02 2016
G.f. for column m=1: x +14*x^3 +2*x*(1 +2*x^2 +3*x^4 -2*x^6 -4*x^8 -2*x^10)/ (1-x^4-x^6)^2. - R. J. Mathar, May 02 2016, corrected Apr 10 2017
G.f. for column m=2: -8 +17*x^2 +2*x^4 -2*(9*x^16 +24*x^14 +17*x^12 -22*x^10 -39*x^8 -9*x^6 +13*x^4 +9*x^2 +4) / (x^6+x^4-1)^3. - R. J. Mathar, May 02 2016
Showing 1-3 of 3 results.