cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A180970 Number of tatami tilings of a 3 X n grid (with monomers allowed).

Original entry on oeis.org

1, 3, 13, 22, 44, 90, 196, 406, 852, 1778, 3740, 7822, 16404, 34346, 72004, 150822, 316076, 662186, 1387596, 2907262, 6091780, 12763778, 26744268, 56036566, 117413804, 246015450, 515476036, 1080072022, 2263070868, 4741795442
Offset: 0

Views

Author

Frank Ruskey, Sep 29 2010

Keywords

Comments

A tatami tiling consists of dimers (1 X 2) and monomers (1 X 1) where no four meet at a point.

Examples

			Below we show the a(2) = 13 tatami tilings of a 2 X 3 rectangle where v = square of a vertical dimer, h = square of a horizontal dimer, m = monomer:
hh hh hh hh hh hh vv vm vm mm mv mv mm
hh vv mv vm mm hh vv vv vm hh vv mv hh
hh vv mv vm hh mm hh mv hh hh vm hh mm
		

References

  • A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, Auspicious Tatami Mat Arrangements, The 16th Annual International Computing and Combinatorics Conference (COCOON 2010), July 19-21, Nha Trang, Vietnam. LNCS 6196 (2010) 288-297.

Crossrefs

Cf. A180965 (2 X n grid), A192090 (4 X n grid), row sums of A272472.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( (1 +2*x +8*x^2 +3*x^3 -6*x^4 -3*x^5 -4*x^6 +2*x^7 +x^8)/(1 -x -2*x^2 -2*x^4 +x^5 +x^6) )); // G. C. Greubel, Apr 05 2021
    
  • Mathematica
    Join[{1,3,13}, LinearRecurrence[{1,2,0,2,-1,-1}, {22,44,90,196,406,852}, 37]] (* Jean-François Alcover, Jan 29 2019 *)
  • Sage
    def A180970_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1 +2*x +8*x^2 +3*x^3 -6*x^4 -3*x^5 -4*x^6 +2*x^7 +x^8)/(1 -x -2*x^2 -2*x^4 +x^5 +x^6) ).list()
    A180970_list(40) # G. C. Greubel, Apr 05 2021

Formula

G.f.: (1 + 2*x + 8*x^2 + 3*x^3 - 6*x^4 - 3*x^5 - 4*x^6 + 2*x^7 + x^8)/(1 - x - 2*x^2 - 2*x^4 + x^5 + x^6).

A192091 Number of tatami tilings of a 5 X n grid (with monomers allowed).

Original entry on oeis.org

1, 8, 68, 90, 126, 178, 325, 584, 1165, 2030, 3619, 6080, 10987, 19362, 35477, 62360, 111837, 195614, 350707, 619568, 1112315, 1967090, 3514597, 6214984, 11093549, 19664558, 35090115, 62247552, 110934699, 196859394, 350650261
Offset: 0

Views

Author

Frank Ruskey and Yuji Yamauchi (eugene.uti(AT)gmail.com), Jul 07 2011

Keywords

Comments

A tatami tiling consists of dimers (1 X 2) and monomers (1 X 1) where no four meet at a point.

Examples

			Here are some tatami tilings of the 5 X 3 grid:
    _ _ _ _ _   _ _ _ _ _   _ _ _ _ _   _ _ _ _ _
   |_ _| |_| | |_| |_|_ _| | |_ _| |_| |_| | |_ _|
   |_ _|_| |_| | |_|_ _| | |_| |_|_| | | |_|_| | |
   |_|_ _|_|_| |_|_ _|_|_| |_|_|_ _|_| |_|_ _|_|_|
		

Crossrefs

Cf. A192090, A192092, A033508 (without tatami condition). Row sums of A272474.

A272473 Triangle T(n,m) by rows: the number of tatami tilings of a 4 by n grid with 2*m monomers.

Original entry on oeis.org

1, 3, 1, 4, 18, 7, 4, 27, 13, 2, 32, 32, 3, 52, 64, 7, 3, 62, 133, 40, 3, 99, 269, 110, 9, 5, 152, 437, 280, 48, 5, 163, 730, 669, 138, 9, 6, 258, 1243, 1318, 433, 48, 8, 343, 1823, 2670, 1239, 154, 9, 8, 408, 2949, 5240, 2849, 600, 48, 11, 632, 4577
Offset: 1

Views

Author

R. J. Mathar, Apr 30 2016

Keywords

Comments

The number of squares in the 4 by n floor is even, so the number of tilings with an odd number of monomers is zero.

Examples

			The triangle starts in row n=1 and column m=0 as:
1,3,1;
4,18,7;
4,27,13;
2,32,32;
3,52,64,7;
3,62,133,40;
3,99,269,110,9;
5,152,437,280,48;
5,163,730,669,138,9;
6,258,1243,1318,433,48;
8,343,1823,2670,1239,154,9;
8,408,2949,5240,2849,600,48;
11,632,4577,9011,6655,1927,172,9;
13,746,6287,16184,14697,4930,777,48;
14,971,9928,28135,28805,13089,2669,190,9;
19,1394,14234,44806,58022,32176,7501,954,48;
21,1610,19501,75702,111795,70427,22344,3445,208,9;
25,2224,29785,121302,199354,157078,59859,10576,1131,48;
32,2909,40073,184597,366553,331449,143611,34646,4257,226,9;
35,3464,55939,298278,644436,651772,350855,99300,14167,1308,48;
44,4820,81474,449995,1081033,1303651,802565,258303,50095,5105,244,9;
53,5924,106460,670726,1868914,2488996,1719501,684338,151835,18274,1485,48;
60,7408,150672,1040424,3077401,4548409,3716945,1678785,425017,68761,5989,262,9;
76,9972,208211,1503372,4956628,8434302,7641320,3879356,1208052,218806,22897,1662,48;
		

Crossrefs

Cf. A192090 (row sums), A068923 (column m=0), A272472 (3 by n grid), A100265 (without tatami condition, reversed rows).

Formula

G.f. x*( -1 -8*x^7*y^2 +21*x^5*y^2 -7*x^7*y^6 +4*x^3*y^2 -3*x^7 +2*x^5 -8*x^2*y^2 -4*x^8*y^4 -3*x -6*x*y^4 -15*x*y^2 -2*x^3*y^4 -6*x^8 -5*x^10*y^2 -5*x^9*y^2 -y^4 -2*x^8*y^2 -3*y^2 -8*x^11*y^2 +5*x^11*y^4 -3*x^2*y^4 -2*x^5*y^6 +2*x^13 +x^12 +x^11 +x^6 -7*x^7*y^4 +x^7*y^8 +11*x^4*y^2 -3*x^9 -15*x^10*y^4 -2*x^10*y^6 +18*x^9*y^4 +36*x^6*y^4 +20*x^6*y^2 -17*x^ 5*y^4 -8*x^4*y^4 +4*x^3 +8*x^6*y^6 +5*x^4 +2*x^9*y^6 -y^8*x^6 +6*y^6*x^3 +y^6*x^2)/ (x^11 -x^10 +2*x^9 -3*x^9*y^2 +x^8*y^2 -2*x^8 +x^7 +x^6*y^4 -5*x^6*y^2 -3*x^6 +2*x^5 +5*x^5*y^2 +x^4*y^2 -2*x^4 -x^3*y^2 +2*x^3 +x^2*y^2 +x -1). - R. J. Mathar, May 01 2016
Showing 1-3 of 3 results.