A180970 Number of tatami tilings of a 3 X n grid (with monomers allowed).
1, 3, 13, 22, 44, 90, 196, 406, 852, 1778, 3740, 7822, 16404, 34346, 72004, 150822, 316076, 662186, 1387596, 2907262, 6091780, 12763778, 26744268, 56036566, 117413804, 246015450, 515476036, 1080072022, 2263070868, 4741795442
Offset: 0
Keywords
Examples
Below we show the a(2) = 13 tatami tilings of a 2 X 3 rectangle where v = square of a vertical dimer, h = square of a horizontal dimer, m = monomer: hh hh hh hh hh hh vv vm vm mm mv mv mm hh vv mv vm mm hh vv vv vm hh vv mv hh hh vv mv vm hh mm hh mv hh hh vm hh mm
References
- A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, Auspicious Tatami Mat Arrangements, The 16th Annual International Computing and Combinatorics Conference (COCOON 2010), July 19-21, Nha Trang, Vietnam. LNCS 6196 (2010) 288-297.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- A. Erickson, F. Ruskey, M. Schurch and J. Woodcock, Monomer-Dimer Tatami Tilings of Rectangular Regions, Electronic Journal of Combinatorics, 18(1) (2011) P109.
- Alejandro Erickson, Frank Ruskey, Mark Schurch, and Jennifer Woodcock, Auspicious tatami mat arrangements, arXiv:1103.3309 [math.CO], 2011. See p. 17.
- Index entries for linear recurrences with constant coefficients, signature (1,2,0,2,-1,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1 +2*x +8*x^2 +3*x^3 -6*x^4 -3*x^5 -4*x^6 +2*x^7 +x^8)/(1 -x -2*x^2 -2*x^4 +x^5 +x^6) )); // G. C. Greubel, Apr 05 2021 -
Mathematica
Join[{1,3,13}, LinearRecurrence[{1,2,0,2,-1,-1}, {22,44,90,196,406,852}, 37]] (* Jean-François Alcover, Jan 29 2019 *)
-
Sage
def A180970_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1 +2*x +8*x^2 +3*x^3 -6*x^4 -3*x^5 -4*x^6 +2*x^7 +x^8)/(1 -x -2*x^2 -2*x^4 +x^5 +x^6) ).list() A180970_list(40) # G. C. Greubel, Apr 05 2021
Formula
G.f.: (1 + 2*x + 8*x^2 + 3*x^3 - 6*x^4 - 3*x^5 - 4*x^6 + 2*x^7 + x^8)/(1 - x - 2*x^2 - 2*x^4 + x^5 + x^6).
Comments