A272482 a(n) equals the coefficient of x^(2*n)*y^n/(2*n)! in cos((x - x*y)/2) / cos((x + x*y)/2).
1, 1, 3, 25, 455, 14301, 683067, 45956625, 4136759055, 479777869285, 69653708853443, 12371662732650585, 2638795469278520279, 665531624367489426925, 195911141957772574473675, 66564029296445548535841825, 25853886516555100370014075935, 11383146182215029605579802759285, 5639331535011059552351840518792275, 3122923020612123544335165657648107625, 1921790647828858936591348065677192750055
Offset: 0
Keywords
Examples
a(n) equals the coefficient of x^(2*n)*y^n/(2*n)! in the series expansion cos((x - x*y)/2) / cos((x + x*y)/2) = 1 + x^2*(y)/2! + x^4*(y + 3*y^2 + y^3)/4! + x^6*(3*y + 15*y^2 + 25*y^3 + 15*y^4 + 3*y^5)/6! + x^8*(17*y + 119*y^2 + 329*y^3 + 455*y^4 + 329*y^5 + 119*y^6 + 17*y^7)/8! + x^10*(155*y + 1395*y^2 + 5325*y^3 + 11235*y^4 + 14301*y^5 + 11235*y^6 + 5325*y^7 + 1395*y^8 + 155*y^9)/10! +... This sequence forms the central terms in triangle A272481, which begins: [1]; [0, 1, 0]; [0, 1, 3, 1, 0]; [0, 3, 15, 25, 15, 3, 0]; [0, 17, 119, 329, 455, 329, 119, 17, 0]; [0, 155, 1395, 5325, 11235, 14301, 11235, 5325, 1395, 155, 0]; ...
Programs
-
Mathematica
Flatten[{1, Table[Coefficient[Series[Cos[(x - x*y)/2]/Cos[(x + x*y)/2], {x, 0, 2*n}, {y, 0, 2*n}], x^(2*n)*y^n]*(2*n)!, {n, 1, 20}]}] (* Vaclav Kotesovec, May 07 2016 *) Table[Sum[Binomial[n, k] * Abs[EulerE[2*k]], {k, 0, n}] * Binomial[2*n,n]/4^n, {n, 0, 20}] (* faster, Vaclav Kotesovec, May 07 2016 *)
-
PARI
{a(n) = my(X=x+x*O(x^(2*n))); (2*n)!*polcoeff(polcoeff( cos((X-x*y)/2)/cos((X+x*y)/2), 2*n,x), n,y)} for(n=0,30, print1(a(n),", "))
Formula
a(n) ~ 2^(4*n+3) * n^(2*n) / (Pi^(2*n+1) * exp(2*n)). - Vaclav Kotesovec, May 07 2016
Comments