A272492 Number of ordered set partitions of [n] with nondecreasing block sizes and maximal block size equal to two.
1, 3, 18, 90, 630, 4410, 37800, 340200, 3515400, 38669400, 471517200, 6129723600, 86497210800, 1297458162000, 20841060240000, 354298024080000, 6389869069584000, 121407512322096000, 2430526127309280000, 51041048673494880000, 1123451899297247520000
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..450
Crossrefs
Column k=2 of A262071.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i)))) end: a:= n-> (k-> b(n, k) -b(n, k-1))(2): seq(a(n), n=2..30);
-
Mathematica
Table[n!*(1 + ((-1)^n*(Sqrt[2] - 1) - Sqrt[2] - 1)/2^(n/2 + 1)), {n, 2, 20}] (* Vaclav Kotesovec, May 07 2016 *)
Formula
E.g.f.: x^2 * Product_{i=1..2} (i-1)!/(i!-x^i).
Recurrence: 2*a(n) = 2*n*a(n-1) + (n-1)*n*a(n-2) - (n-2)*(n-1)*n*a(n-3). - Vaclav Kotesovec, May 07 2016