A272493 Number of ordered set partitions of [n] with nondecreasing block sizes and maximal block size equal to three.
1, 4, 30, 200, 1610, 13440, 130200, 1327200, 15107400, 183321600, 2422820400, 34104470400, 515897382000, 8276556288000, 141290381232000, 2546760408192000, 48489153817104000, 970454450085120000, 20400874234060320000, 448974320483969280000
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..450
Crossrefs
Column k=3 of A262071.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i)))) end: a:= n-> (k-> b(n, k) -b(n, k-1))(3): seq(a(n), n=3..30);
-
Mathematica
FullSimplify[Table[n! * ((-35*(1 + Sqrt[2]) + 7*2^(1 + n/2)* (3*Sqrt[2] - 2) - 5*(-1)^n*(17*Sqrt[2] - 23))/2^(n/2) + 2^(5/6 - n/3)* 3^(-1 - n/3)*((11*3^(1/3) + 6*2^(1/3)* 3^(2/3))*(3 - Sqrt[2]) + 13*2^(1/6)*(3*Sqrt[2] - 2) + (26*2^(1/6)*(3*Sqrt[2] - 2) - (11*3^(1/3) + 6*2^(1/3)*3^(2/3))* (3 - Sqrt[2]))*Cos[2*n*Pi/3] + 3^(1/6)*(3 - Sqrt[2])*(11*3^(2/3) - 18*2^(1/3))*Sin[2*n*Pi/3])) / (35*(3*Sqrt[2] - 2)), {n, 3, 20}]] (* Vaclav Kotesovec, May 07 2016 *)
Formula
E.g.f.: x^3 * Product_{i=1..3} (i-1)!/(i!-x^i).
Recurrence: 12*a(n) = 12*n*a(n-1) + 6*(n-1)*n*a(n-2) - 4*(n-2)*(n-1)*n*a(n-3) - 2*(n-3)*(n-2)*(n-1)*n*a(n-4) - (n-4)*(n-3)*(n-2)*(n-1)*n*a(n-5) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*n*a(n-6). - Vaclav Kotesovec, May 07 2016