cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272493 Number of ordered set partitions of [n] with nondecreasing block sizes and maximal block size equal to three.

Original entry on oeis.org

1, 4, 30, 200, 1610, 13440, 130200, 1327200, 15107400, 183321600, 2422820400, 34104470400, 515897382000, 8276556288000, 141290381232000, 2546760408192000, 48489153817104000, 970454450085120000, 20400874234060320000, 448974320483969280000
Offset: 3

Views

Author

Alois P. Heinz, May 01 2016

Keywords

Crossrefs

Column k=3 of A262071.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i))))
        end:
    a:= n-> (k-> b(n, k) -b(n, k-1))(3):
    seq(a(n), n=3..30);
  • Mathematica
    FullSimplify[Table[n! * ((-35*(1 + Sqrt[2]) + 7*2^(1 + n/2)* (3*Sqrt[2] - 2) - 5*(-1)^n*(17*Sqrt[2] - 23))/2^(n/2) + 2^(5/6 - n/3)* 3^(-1 - n/3)*((11*3^(1/3) + 6*2^(1/3)* 3^(2/3))*(3 - Sqrt[2]) + 13*2^(1/6)*(3*Sqrt[2] - 2) + (26*2^(1/6)*(3*Sqrt[2] - 2) - (11*3^(1/3) + 6*2^(1/3)*3^(2/3))* (3 - Sqrt[2]))*Cos[2*n*Pi/3] + 3^(1/6)*(3 - Sqrt[2])*(11*3^(2/3) - 18*2^(1/3))*Sin[2*n*Pi/3])) / (35*(3*Sqrt[2] - 2)), {n, 3, 20}]] (* Vaclav Kotesovec, May 07 2016 *)

Formula

E.g.f.: x^3 * Product_{i=1..3} (i-1)!/(i!-x^i).
Recurrence: 12*a(n) = 12*n*a(n-1) + 6*(n-1)*n*a(n-2) - 4*(n-2)*(n-1)*n*a(n-3) - 2*(n-3)*(n-2)*(n-1)*n*a(n-4) - (n-4)*(n-3)*(n-2)*(n-1)*n*a(n-5) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*n*a(n-6). - Vaclav Kotesovec, May 07 2016