A272494 Number of ordered set partitions of [n] with nondecreasing block sizes and maximal block size equal to four.
1, 5, 45, 350, 3290, 30870, 334950, 3765300, 46950750, 617867250, 8815156350, 133031398500, 2149039893000, 36645888279000, 662781093975000, 12612741639498000, 252857867367105000, 5314211504296695000, 117053051989758885000, 2693288170000578150000
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..450
Crossrefs
Column k=4 of A262071.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i)))) end: a:= n-> (k-> b(n, k) -b(n, k-1))(4): seq(a(n), n=4..30);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, Binomial[n, i]*b[n - i, i]]]]; a[n_] := b[n, 4] - b[n, 3]; a /@ Range[4, 30] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
Formula
E.g.f.: x^4 * Product_{i=1..4} (i-1)!/(i!-x^i).