A272518 Number of set partitions of [n] into six blocks with distinct sizes.
2053230379200, 6453009763200, 43288940494800, 242418066770880, 1707999012720000, 12887361202716000, 144924867388501200, 620550897351184800, 4048435123506774000, 23424084614648718000, 161250104584826056800, 1013722794731975328000, 8616255173755280251200
Offset: 21
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 21..1000
Crossrefs
Column k=6 of A131632.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t>i or t*(t+1)/2>n or t*(2*i+1-t)/2
n, 0, b(n-i, i-1, t-1)*binomial(n,i)))) end: a:= n-> b(n$2, 6): seq(a(n), n=21..40);
Formula
a(n) = n! * [x^n*y^6] Product_{n>=1} (1+y*x^n/n!).