A272527 Numbers k such that prime(k) - 2 is the average of four consecutive odd squares.
9, 14, 20, 28, 36, 56, 67, 94, 124, 155, 173, 192, 213, 230, 253, 344, 395, 475, 504, 534, 596, 725, 759, 795, 1230, 1359, 1449, 1549, 1596, 1647, 1688, 1745, 1798, 2005, 2119, 2164, 2335, 2395, 2457, 2759, 2885, 2952, 3340, 3627, 3696, 3835, 3909, 3987, 4438
Offset: 1
Keywords
Examples
a(1) = 9 because prime(9) - 2 = 23 - 2 = 21, and (1^2 + 3^2 + 5^2 + 7^2)/4 = 21; a(2) = 14 because prime(14) - 2 = 43 - 2 = 41, and (3^2 + 5^2 + 7^2 + 9^2)/4 = 41.
Links
- Michel Lagneau, Illustration
Programs
-
Maple
for n from 9 to 1000 do: p:=ithprime(n)-2: for m from 1 by 2 to p do: s:=(m^2+(m+2)^2+(m+4)^2+(m+6)^2)/4: if s=p then printf(`%d, `,n):else fi: od: od:
-
Mathematica
PrimePi@ Select[(#^2 + (# + 2)^2 + (# + 4)^2 + (# + 6)^2)/4 &@ Range@ 210 + 2, PrimeQ] (* Michael De Vlieger, May 02 2016 *)
Comments