A272550 Lexicographically earliest increasing sequence of primes such that odd-indexed terms have final digit 1 and even-indexed terms have final digit 9.
11, 19, 31, 59, 61, 79, 101, 109, 131, 139, 151, 179, 181, 199, 211, 229, 241, 269, 271, 349, 401, 409, 421, 439, 461, 479, 491, 499, 521, 569, 571, 599, 601, 619, 631, 659, 661, 709, 751, 769, 811, 829, 881, 919, 941, 1009, 1021, 1039, 1051, 1069, 1091, 1109
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) option remember; local p, d; if n=1 then p:= 11 else p:= a(n-1); d:= `if`(n::odd, 1, 9); while irem(p, 10)<>d do p:=nextprime(p) od fi; p end: seq(a(n), n=1..100); # Alois P. Heinz, May 11 2016
-
Mathematica
a[1] = 11; a[n_] := a[n] = Block[{d, q = a[n-1]}, d=10-Mod[q,10]; While[ Mod[q = NextPrime@ q, 10] != d]; q]; Array[a, 30] (* Giovanni Resta, May 11 2016 *)
Comments