cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272592 Numbers n such that the multiplicative group modulo n is the direct product of 2 cyclic groups.

Original entry on oeis.org

8, 12, 15, 16, 20, 21, 28, 30, 32, 33, 35, 36, 39, 42, 44, 45, 51, 52, 55, 57, 63, 64, 65, 66, 68, 69, 70, 75, 76, 77, 78, 85, 87, 90, 91, 92, 93, 95, 99, 100, 102, 108, 110, 111, 114, 115, 116, 117, 119, 123, 124, 126, 128, 129, 130, 133, 135, 138, 141, 143, 145, 147, 148, 150, 153, 154, 155, 159, 161
Offset: 1

Views

Author

Joerg Arndt, May 03 2016

Keywords

Comments

Numbers n such that A046072(n) = 2.
Numbers are of the form p^e*q^f, 2*p^e*q^f, 4p^e, or 2^(e+2) where p and q are distinct odd primes and e,f >= 1. - Charles R Greathouse IV, Jan 09 2022

Crossrefs

Cf. A046072.
Supersequence of A225375.
Direct product of k groups: A033948 (k=1), A272593 (k=3), A272594 (k=4), A272595 (k=5), A272596 (k=6), A272597 (k=7), A272598 (k=8), A272599 (k=9).

Programs

  • Mathematica
    A046072[n_] := Which[n == 1 || n == 2, 1,
         OddQ[n], PrimeNu[n],
         EvenQ[n] && !Divisible[n, 4], PrimeNu[n] - 1,
         Divisible[n, 4] && !Divisible[n, 8], PrimeNu[n],
         Divisible[n, 8], PrimeNu[n] + 1];
    Select[Range[200], A046072[#] == 2&] (* Jean-François Alcover, Dec 22 2021, after Geoffrey Critzer in A046072 *)
  • PARI
    for(n=1,10^3, my(t=#(znstar(n)[2]));if(t==2,print1(n,", ")));