cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272600 Composites k such that p-1 divides k-1 for each prime divisor of k-1.

Original entry on oeis.org

9, 21, 25, 33, 49, 55, 65, 81, 85, 121, 129, 145, 161, 169, 201, 217, 221, 253, 273, 289, 295, 301, 321, 325, 343, 361, 385, 441, 469, 481, 501, 505, 513, 545, 589, 625, 649, 685, 721, 781, 801, 817, 841, 865, 901, 961, 973, 1001, 1025, 1027, 1081, 1089, 1101, 1135, 1177, 1261, 1281, 1333, 1345, 1369, 1405, 1441, 1501
Offset: 1

Views

Author

Joerg Arndt, May 16 2016

Keywords

Comments

Composites not in A272601.

Crossrefs

Cf. A080062 (composite n such that p-1 divides n-1 for each prime divisor of n).

Programs

  • Mathematica
    pdkQ[n_]:=Module[{p=FactorInteger[n-1][[;;,1]]-1},AllTrue[(n-1)/p,IntegerQ]]; Select[Range[ 1550],CompositeQ[#]&&pdkQ[#]&] (* Harvey P. Dale, Feb 26 2024 *)
  • PARI
    forcomposite(n=4, 10^4, my(q=1, f=factor(n-1)[,1]); for(j=1, #f, if((n-1)%(f[j]-1), q=0; break)); if(q, print1(n,", ") ) );
    
  • PARI
    is(n)=my(f=factor(n-1)[,1]); for(i=1,#f, if((n-1)%(f[i]-1), return(0))); !isprime(n) && n>1 \\ Charles R Greathouse IV, May 16 2016