cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A272603 Number of permutations of [n] whose cycle lengths are factorials.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 196, 1072, 7484, 42940, 261496, 1477136, 15219832, 134828344, 1488515120, 13692017536, 130252442896, 1123580329232, 14639510308384, 173489066401600, 2528654220104096, 31472160333513376, 402634734214583872, 4645625988351336704, 25925035549644280991680
Offset: 0

Views

Author

Joerg Arndt, May 29 2016

Keywords

Crossrefs

Cf. A000142, A273001 (cycle lengths are Fibonacci numbers), A272602 (e.g.f.: exp( sum(n>=1, x^(n!) / n ) ) ), A273996, A317132.

Programs

  • Maple
    a:= proc(n) option remember; local r, f, i;
          if n=0 then 1 else r, f, i:= $0..2;
            while f<=n do r:= r +a(n-f)*(f-1)!*
              binomial(n-1, f-1); f, i:= f*i, i+1
            od; r
          fi
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 04 2016
  • Mathematica
    nmax = 4; egf = Exp[Sum[x^n!/n!, {n, 1, nmax}]] + O[x]^(nmax! + 1); CoefficientList[egf, x]*Range[0, nmax!]! (* Jean-François Alcover, Feb 19 2017 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(n=1,10,x^(n!)/n!))))

Formula

E.g.f.: exp( sum(n>=1, x^(n!) / n! ) ).
Showing 1-1 of 1 results.