cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272665 Imaginary parts of b(n) sequence used to define A143056.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 7, 4, -8, -36, -87, -162, -244, -278, -145, 360, 1520, 3608, 6641, 9882, 11028, 5166, -16073, -64084, -149528, -272076, -399911, -436682, -179684, 712530, 2698335, 6192720, 11140064, 16170928, 17258081, 6043314, -31395292, -113477674
Offset: 1

Views

Author

N. J. A. Sloane, May 17 2016

Keywords

Crossrefs

Cf. A143056.

Programs

  • Mathematica
    Im[Fibonacci[Range[0, 20], 1 + I]] (* Vladimir Reshetnikov, Oct 04 2016 *)
    LinearRecurrence[{2, 0, -2, -1}, {0, 0, 1, 2}, 36] (* Robert G. Wilson v, Oct 05 2016 *)
  • PARI
    concat(vector(2), Vec(x^3/(1-2*x+2*x^3+x^4) + O(x^50))) \\ Colin Barker, May 17 2016

Formula

From Colin Barker, May 17 2016: (Start)
a(n) = 2*a(n-1)-2*a(n-3)-a(n-4) for n>4.
G.f.: x^3 / (1-2*x+2*x^3+x^4).
(End)
a(n) = (sin((n-1)*theta)*(tau^(n-1) + (-tau)^(1-n))*phi^(3/2) - cos((n-1)*theta)*(tau^(n-1) - (-tau)^(1-n))/phi^(3/2))/(2*sqrt(5)), where phi=(1+sqrt(5))/2, tau=sqrt(phi+sqrt(phi)), theta=arctan(phi^(-3/2)). - Vladimir Reshetnikov, Oct 04 2016