A272691 Number of factorizations of the highly factorable numbers A033833.
1, 2, 3, 4, 5, 7, 9, 12, 16, 19, 21, 29, 30, 31, 38, 47, 52, 57, 64, 77, 98, 105, 109, 118, 171, 212, 289, 382, 392, 467, 484, 662, 719, 737, 783, 843, 907, 1097, 1261, 1386, 1397, 1713, 1768, 2116, 2179, 2343, 3079, 3444, 3681, 3930, 5288, 5413, 5447
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Jan 13 2020: (Start) The a(1) = 1 through a(8) = 12 factorizations of highly factorable numbers: () (4) (8) (12) (16) (24) (36) (48) (2*2) (2*4) (2*6) (2*8) (3*8) (4*9) (6*8) (2*2*2) (3*4) (4*4) (4*6) (6*6) (2*24) (2*2*3) (2*2*4) (2*12) (2*18) (3*16) (2*2*2*2) (2*2*6) (3*12) (4*12) (2*3*4) (2*2*9) (2*3*8) (2*2*2*3) (2*3*6) (2*4*6) (3*3*4) (3*4*4) (2*2*3*3) (2*2*12) (2*2*2*6) (2*2*3*4) (2*2*2*2*3) (End)
Links
- Amiram Eldar, Table of n, a(n) for n = 1..235 (terms 1..118 from E. R. Canfield et al.)
- R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
- Jun Kyo Kim, On highly factorable numbers, Journal Of Number Theory, Vol. 72, No. 1 (1998), pp. 76-91.
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[facs[n]],{n,100}]//.{foe___,x_,y_,afe___}/;x>=y:>{foe,x,afe} (* Gus Wiseman, Jan 13 2020 *)
Formula
a(n) = A033834(n) + 1. - Amiram Eldar, Jun 07 2019
Comments