cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272691 Number of factorizations of the highly factorable numbers A033833.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 12, 16, 19, 21, 29, 30, 31, 38, 47, 52, 57, 64, 77, 98, 105, 109, 118, 171, 212, 289, 382, 392, 467, 484, 662, 719, 737, 783, 843, 907, 1097, 1261, 1386, 1397, 1713, 1768, 2116, 2179, 2343, 3079, 3444, 3681, 3930, 5288, 5413, 5447
Offset: 1

Views

Author

N. J. A. Sloane, Jun 02 2016, following a suggestion from George Beck

Keywords

Comments

These are defined as record numbers of factorizations (A001055). - Gus Wiseman, Jan 13 2020

Examples

			From _Gus Wiseman_, Jan 13 2020: (Start)
The a(1) = 1 through a(8) = 12 factorizations of highly factorable numbers:
  ()  (4)    (8)      (12)     (16)       (24)       (36)       (48)
      (2*2)  (2*4)    (2*6)    (2*8)      (3*8)      (4*9)      (6*8)
             (2*2*2)  (3*4)    (4*4)      (4*6)      (6*6)      (2*24)
                      (2*2*3)  (2*2*4)    (2*12)     (2*18)     (3*16)
                               (2*2*2*2)  (2*2*6)    (3*12)     (4*12)
                                          (2*3*4)    (2*2*9)    (2*3*8)
                                          (2*2*2*3)  (2*3*6)    (2*4*6)
                                                     (3*3*4)    (3*4*4)
                                                     (2*2*3*3)  (2*2*12)
                                                                (2*2*2*6)
                                                                (2*2*3*4)
                                                                (2*2*2*2*3)
(End)
		

Crossrefs

The strict version is A331232.
Factorizations are A001055, with image A045782 and complement A330976.
Highly factorable numbers are A033833, with strict version A331200.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[facs[n]],{n,100}]//.{foe___,x_,y_,afe___}/;x>=y:>{foe,x,afe} (* Gus Wiseman, Jan 13 2020 *)

Formula

a(n) = A001055(A033833(n)).
a(n) = A033834(n) + 1. - Amiram Eldar, Jun 07 2019