cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272711 Square numbers whose binary reversal is also square.

Original entry on oeis.org

1, 4, 9, 16, 36, 64, 144, 256, 576, 1024, 2304, 4096, 9216, 16384, 36864, 65536, 147456, 262144, 589824, 1048576, 2359296, 4194304, 9437184, 16777216, 20457529, 37748736, 67108864, 81830116, 143784081, 150994944, 268435456, 327320464, 331130809, 575136324, 603979776
Offset: 1

Views

Author

Benjamin Przybocki, May 04 2016

Keywords

Comments

The first term in this sequence whose binary reversal is not 1 or 9 is 20457529 (which is a binary palindrome).
The previous comment means that the sequence does not just contain the squares of numbers in A029744. - R. J. Mathar, May 06 2016
If k is a term, then so is 4*k. - Robert Israel, Jun 06 2023

Crossrefs

Cf. A061457 (analogous in base 10).

Programs

  • Maple
    rev:= proc(n) local L,i;
      L:= convert(n,base,2);
      add(L[-i]*2^(i-1),i=1..nops(L))
    end proc:
    select(n -> issqr(rev(n)), [seq(i^2,i=1..100000)]); # Robert Israel, Jun 06 2023
  • Mathematica
    Select[Range[10^5]^2, IntegerQ@ Sqrt@ FromDigits[ Reverse@ IntegerDigits[#, 2], 2] &] (* Giovanni Resta, May 05 2016 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (issquare(subst(Polrev(binary(n^2)), x, 2)), print1(n^2, ", ")););} \\ Michel Marcus, May 05 2016