A272754 Primes p such that p + 2 is a Carmichael number (A002997).
1103, 2819, 6599, 29339, 41039, 52631, 62743, 172079, 188459, 278543, 340559, 488879, 656599, 670031, 1033667, 2100899, 3146219, 5048999, 6049679, 8719307, 10024559, 10402559, 10877579, 11119103, 12261059, 14913989, 15247619, 15829631, 15888311, 17315999, 17812079, 18900971, 25603199, 26921087
Offset: 1
Keywords
Examples
1103 is a term because 1103 is prime and 1105 is a Carmichael number.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Cases[Range[1, 10^7, 2], n_ /; Mod[n, CarmichaelLambda[n]] == 1 && ! PrimeQ[n]] - 2, PrimeQ] (* Michael De Vlieger, May 05 2016, after Artur Jasinski at A002997 *)
-
PARI
isA002997(n) = {my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1} lista(nn) = forprime(p=2, nn, if(isA002997(p+2), print1(p, ", ")));
Comments