A272818 Numbers such that (sum + product) of all their prime factors equals (sum + product) of all exponents in their prime factorization.
1, 4, 27, 72, 96, 108, 486, 800, 1280, 3125, 6272, 10976, 12500, 14336, 21600, 30375, 36000, 48600, 51840, 54675, 69120, 84375, 121500, 134456, 169344, 174960, 192000, 225000, 240000, 247808, 337500, 340736, 395136, 435456, 451584, 703125, 750141, 781250, 787320, 823543, 857304, 885735
Offset: 1
Keywords
Examples
885735 = 3^11 * 5 is included because (3+5) + 3*5 = (11+1) + 11*1. 2^10 * 3^6 * 19^2 is included because (2+3+19)+ 2*3*19 = (10+6+2)+ 10*6*2.
Links
- Giuseppe Coppoletta and Giovanni Resta, Table of n, a(n) for n = 1..1413 (terms < 10^19, first 100 terms from G. Coppoletta)
Programs
-
Mathematica
Select[Range[10^6], Total@ First@ # + Times @@ First@ # == Total@ Last@ # + Times @@ Last@ # &@ Transpose@ FactorInteger@ # &] (* Michael De Vlieger, May 08 2016 *)
-
PARI
spp(v) = vecsum(v) + prod(k=1, #v, v[k]); isok(n) = my(f = factor(n)); spp(f[,1]) == spp(f[,2]); \\ Michel Marcus, May 08 2016
-
Sage
def d(n): v = factor(n) d1 = sum(w[0] for w in v) + prod(w[0] for w in v) d2 = sum(w[1] for w in v) + prod(w[1] for w in v) return d1 == d2 [k for k in (1..10000) if d(k)]
Comments