cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272862 Positive integers j such that prime(i) + prime(j) = i*j for some i <= j.

Original entry on oeis.org

4, 6, 8, 24, 29, 30, 164, 165, 166, 1051, 2624, 2638, 2650, 2670, 2674, 2676, 40027, 40028, 40112, 251701, 251703, 251706, 251751, 637144, 637202, 637216, 637220, 1617162, 1617165, 4124694, 10553383, 10553408, 10553464, 10553533, 10553535, 10553839, 69709686
Offset: 1

Views

Author

Giuseppe Coppoletta, Jul 25 2016

Keywords

Comments

Also pi(q) for primes q verifying p+q = pi(p)*pi(q) for some prime p <= q.
The list of products i*j gives A272860. See also comments there.

Examples

			8 is a term as prime(3) + prime(8) = 3*8.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000], Function[j, Total@ Boole@ Map[Prime@ # + Prime@ j == # j &, Range@ j] > 0]] (* Michael De Vlieger, Jul 28 2016 *)
  • PARI
    is(n) = for(i=1, n, if(prime(i)+prime(n)==i*n, return(1))); return(0) \\ Felix Fröhlich, Jul 27 2016
    
  • PARI
    is(n,p=prime(n))=my(i); forprime(q=2,p, if(i++*n==p+q, return(1))); 0
    v=List(); n=0; forprime(p=2,1e6, if(is(n++,p), listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Jul 28 2016
  • Sage
    def sol(n):
        if n<5: a=n
        else: a=exp(n+1)/(n+1)
        b=(n-1)/n^2*exp(n^2/(n-1.1))
        return [j for j in range(a,b) if is_prime(n*j-nth_prime(n)) and prime_pi(n*j-nth_prime(n))==j]
    flatten([sol(i) for i in (1..15) if len(sol(i))>0]) #