cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272871 Imaginary part of (n + i)^4.

Original entry on oeis.org

0, 0, 24, 96, 240, 480, 840, 1344, 2016, 2880, 3960, 5280, 6864, 8736, 10920, 13440, 16320, 19584, 23256, 27360, 31920, 36960, 42504, 48576, 55200, 62400, 70200, 78624, 87696, 97440, 107880, 119040, 130944, 143616, 157080, 171360, 186480, 202464, 219336
Offset: 0

Views

Author

Colin Barker, May 08 2016

Keywords

Examples

			a(5) = 480 because (5 + i)^4 = 476 + 480*i.
		

Crossrefs

Programs

  • Mathematica
    Table[Im[(n + I)^4], {n, 0, 38}] (* or *)
    Table[4 (n - 1) n (n + 1), {n, 0, 38}] (* or *)
    CoefficientList[Series[24 x^2/(1 - x)^4, {x, 0, 38}], x] (* Michael De Vlieger, May 08 2016 *)
  • PARI
    a(n) = 4*(n-1)*n*(n+1)
    
  • PARI
    vector(50, n, n--; imag((n+I)^4))
    
  • PARI
    concat(vector(2), Vec(24*x^2/(1-x)^4 + O(x^50)))

Formula

a(n) = 4*A007531(n+1).
a(n) = 4*(n-1)*n*(n+1).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3.
G.f.: 24*x^2 / (1-x)^4.
a(n) = b(n+1)*b(n-1)-b(n)*b(n-2), where b(n) is A002378(n). - Anton Zakharov, Aug 15 2016
From Ilya Gutkovskiy, Aug 15 2016: (Start)
E.g.f.: 4*x^2*(3 + x)*exp(x).
a(n) = 24*binomial(n+1,3).
a(n) = Sum_{k=0..n} A064200(k). (End)