A272874 Decimal expansion of the infinite nested radical sqrt(-1 + sqrt(1 + sqrt(-1 + sqrt(1 + ...)))).
4, 5, 3, 3, 9, 7, 6, 5, 1, 5, 1, 6, 4, 0, 3, 7, 6, 7, 6, 4, 4, 7, 4, 6, 5, 3, 9, 0, 0, 0, 1, 9, 2, 1, 8, 8, 8, 6, 6, 8, 8, 4, 4, 2, 4, 9, 6, 5, 0, 7, 7, 6, 5, 9, 8, 8, 1, 6, 6, 3, 2, 8, 5, 4, 3, 2, 3, 3, 3, 2, 3, 0, 4, 2, 1, 1, 6, 8, 6, 0, 5, 6, 6, 7, 8, 7, 2, 5, 1, 4, 8, 4, 9, 6, 4, 0, 5, 9, 9, 7, 6, 3, 1, 5, 3
Offset: 0
Examples
0.45339765151640376764474653900019218886688442496507765988166328543...
Links
Crossrefs
Cf. A137421.
Programs
-
Mathematica
RealDigits[N[x/.Solve[x == Sqrt[Sqrt[x+1]-1], x][[2]], 100]][[1]] (* Giovanni Resta, May 10 2016 *)
-
PARI
real(polroots(Pol([1,0,2,-1]))[1])
-
PARI
\\ Iterative version; using realprecision of 2100 digits: M(z)=sqrt(-1+sqrt(1+z)); x=1; \\ Starting with a real x>0, all terms are actually real. \\ Over 6000 iterations were needed to make stable 2000 digits: for(n=1,6500,x=M(x));real(x)
-
PARI
polrootsreal(x^3+2*x-1)[1] \\ Charles R Greathouse IV, Oct 27 2023
Formula
Satisfies x = sqrt(-1 + sqrt(1+x)).
Equals (1/6)*(108 + 12*sqrt(177))^(1/3) - 4/(108 + 12*sqrt(177))^(1/3). - Alois P. Heinz, May 09 2016
Equals ((1/2)*(1 + sqrt(3*59)/9))^(1/3) - ((1/2)*(1 - sqrt(3*59)/9))^(1/3)*(1 - sqrt(3)*i)/2, with i = sqrt(-1). - Wolfdieter Lang, Aug 19 2022
Comments