cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272914 Sixth powers ending in digit 6.

Original entry on oeis.org

4096, 46656, 7529536, 16777216, 191102976, 308915776, 1544804416, 2176782336, 7256313856, 9474296896, 24794911296, 30840979456, 68719476736, 82653950016, 164206490176, 192699928576, 351298031616, 404567235136, 689869781056, 782757789696, 1265319018496, 1418519112256, 2194972623936
Offset: 1

Views

Author

Bruno Berselli, May 24 2016

Keywords

Comments

Other sequences of k-th powers ending in digit k are: A017281 (k=1), A017355 (k=3), A017333 (k=5), A017311 (k=7), A017385 (k=9). It is missing k=4 because the fourth powers end with 0, 1, 5 or 6.
Union of A017322 and A017346.
a(h)^(1/6) is a member of A068408 for h = 2, 4, 8, 12, 16, 20, 36, 76, ...

Crossrefs

Similar sequences (see comment): A017281, A017311, A017333, A017355, A017385.

Programs

  • Magma
    /* By definition: */ k:=6; [n^k: n in [0..200] | Modexp(n, k, 10) eq k];
    
  • Magma
    [(10*n-3*(-1)^n-5)^6/64: n in [1..30]];
    
  • Mathematica
    Table[(10 n - 3 (-1)^n - 5)^6/64, {n, 1, 30}]
  • Maxima
    makelist((10*n-3*(-1)^n-5)^6/64, n, 1, 30);
  • PARI
    vector(30, n, nn; (10*n-3*(-1)^n-5)^6/64)
    
  • Sage
    [(10*n-3*(-1)^n-5)^6/64 for n in (1..30)]
    

Formula

O.g.f.: 64*x*(64 + 665*x + 116536*x^2 + 140505*x^3 + 2023280*x^4 + 983830*x^5 + 4720240*x^6 + 983830*x^7 + 2023280*x^8 + 140505*x^9 + 116536*x^10 + 665*x^11 + 64*x^12)/((1 + x)^6*(1 - x)^7).
E.g.f.: (-8192 + 45*(91 + 182*x - 5250*x^2 + 16000*x^3 - 9375*x^4 + 1250*x^5)*exp(-x) + (4097 + 287000*x^2 + 1262500*x^3 + 1253125*x^4 + 375000*x^5 + 31250*x^6)*exp(x))/2.
a(n) = (10*n - 3*(-1)^n - 5)^6/64 = 64*A047221(n)^6.