A272914 Sixth powers ending in digit 6.
4096, 46656, 7529536, 16777216, 191102976, 308915776, 1544804416, 2176782336, 7256313856, 9474296896, 24794911296, 30840979456, 68719476736, 82653950016, 164206490176, 192699928576, 351298031616, 404567235136, 689869781056, 782757789696, 1265319018496, 1418519112256, 2194972623936
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1).
Crossrefs
Programs
-
Magma
/* By definition: */ k:=6; [n^k: n in [0..200] | Modexp(n, k, 10) eq k];
-
Magma
[(10*n-3*(-1)^n-5)^6/64: n in [1..30]];
-
Mathematica
Table[(10 n - 3 (-1)^n - 5)^6/64, {n, 1, 30}]
-
Maxima
makelist((10*n-3*(-1)^n-5)^6/64, n, 1, 30);
-
PARI
vector(30, n, nn; (10*n-3*(-1)^n-5)^6/64)
-
Sage
[(10*n-3*(-1)^n-5)^6/64 for n in (1..30)]
Formula
O.g.f.: 64*x*(64 + 665*x + 116536*x^2 + 140505*x^3 + 2023280*x^4 + 983830*x^5 + 4720240*x^6 + 983830*x^7 + 2023280*x^8 + 140505*x^9 + 116536*x^10 + 665*x^11 + 64*x^12)/((1 + x)^6*(1 - x)^7).
E.g.f.: (-8192 + 45*(91 + 182*x - 5250*x^2 + 16000*x^3 - 9375*x^4 + 1250*x^5)*exp(-x) + (4097 + 287000*x^2 + 1262500*x^3 + 1253125*x^4 + 375000*x^5 + 31250*x^6)*exp(x))/2.
a(n) = (10*n - 3*(-1)^n - 5)^6/64 = 64*A047221(n)^6.
Comments