cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272915 a(n) = n + floor(5*n/6).

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 11, 12, 14, 16, 18, 20, 22, 23, 25, 27, 29, 31, 33, 34, 36, 38, 40, 42, 44, 45, 47, 49, 51, 53, 55, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 77, 78, 80, 82, 84, 86, 88, 89, 91, 93, 95, 97, 99, 100, 102, 104, 106, 108, 110, 111, 113, 115, 117, 119
Offset: 0

Views

Author

Bruno Berselli, Jun 15 2016

Keywords

Comments

Equivalently, numbers congruent to {0, 1, 3, 5, 7, 9} mod 11.
In general, n + floor((k-1)*n/k) provides the numbers congruent to {0, 1, 3, 5, ..., 2*k-3} mod (2*k-1) for k>1.

Crossrefs

Cf. similar sequences with formula n+floor((k-1)*n/k): A032766 (k=2), A047220 (k=3), A047392 (k=4), A187318 (k=5).

Programs

  • Magma
    [n+Floor(5*n/6): n in [0..70]];
  • Mathematica
    Table[n + Floor[5 n/6], {n, 0, 70}]
  • Maxima
    makelist(n+floor(5*n/6), n, 0, 70);
    
  • PARI
    vector(70, n, n--; n+floor(5*n/6))
    
  • Python
    [n+int(5*n/6) for n in range(70)]
    
  • Sage
    [n+floor(5*n/6) for n in range(70)];
    

Formula

G.f.: x*(1 + 2 x + 2 x^2 + 2 x^3 + 2 x^4 + 2 x^5)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5)).
a(n) = a(n-1) + a(n-6) - a(n-7).
a(6*k + r) = 11*k + 2*r - (1 - (-1)^a(r))/2, with r = 0..5.