A272930 a(n) is the least k such that sigma(sigma(k)) = n*k, where sigma(n) is the sum of the divisors of n, or 0 if no such k exists.
1, 2, 8, 15
Offset: 1
Examples
sigma(8) = 15. sigma(15) = 24 = 3*8. Since this does not work for any value smaller than 8, a(3) = 8.
Links
- See the links in A019278. - _Altug Alkan_, May 31 2016 and May 18 2016
Programs
-
Maple
with(numtheory): a:=proc(n) local k : for k while sigma(sigma(k))<>n*k do od : k end: # Robert FERREOL, Apr 11 2018
-
Mathematica
Table[SelectFirst[Range[10^2], Nest[DivisorSigma[1, #] &, #, 2] == n # &], {n, 4}] (* Michael De Vlieger, May 11 2016, Version 10 *)
-
PARI
a(n)=my(r=1);while(sigma(sigma(r))!=n*r,r++);r \\ works only if a(n) is not zero.
Comments