cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A272949 Products of three distinct Fibonacci numbers > 1.

Original entry on oeis.org

30, 48, 78, 80, 120, 126, 130, 195, 204, 208, 210, 312, 315, 330, 336, 340, 504, 510, 520, 534, 544, 546, 550, 816, 819, 825, 840, 864, 880, 884, 890, 1320, 1326, 1335, 1360, 1365, 1398, 1424, 1428, 1430, 1440, 2136, 2142, 2145, 2160, 2184, 2200, 2210, 2262
Offset: 1

Views

Author

Clark Kimberling, May 13 2016

Keywords

Examples

			a(1) = 30 = 2*3*5.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s =  Prepend[s, 0]; Take[s, 100]  (* A160009 *)
    isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
    ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
    Map[Length, ans] (* A272947 *)
    Flatten[Position[Map[Length, ans], 1]]  (* A272948 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]]  (* A000045 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]]  (* A271354 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]]  (* A272949 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]]  (* A272950 *)
    (* Peter J. C. Moses, May 11 2016 *)
    up=10^9; F=Fibonacci; i=3; Union[ Reap[ While[(a = F[i++]) < up, j=i; While[ (b = F[j++]*a) < up, h=j; While[ (c = F[h++]*b) < up, Sow@c ]]]][[2, 1]]] (* Giovanni Resta, May 14 2016 *)

A272948 Positions of Fibonacci numbers in ordered sequence A160009 of all products of Fibonacci numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 27, 35, 44, 56, 70, 87, 108, 133, 163, 199, 242, 292, 352, 421, 504, 599, 712, 841, 994, 1167, 1371, 1602, 1873, 2179, 2535, 2936, 3401, 3924, 4528, 5206, 5985, 6858, 7857, 8976, 10252, 11679, 13299, 15109, 17159, 19446, 22028
Offset: 1

Views

Author

Clark Kimberling, May 13 2016

Keywords

Examples

			A160009 = (0,1,2,3,5,6,8,10,13,15,16,21,...), so that a = (1,2,3,4,5,7,9,12,...).
		

Crossrefs

Programs

  • Mathematica
    s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s =  Prepend[s, 0]; Take[s, 100]  (* A160009 *)
    isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
    ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
    Map[Length, ans] (* A272947 *)
    Flatten[Position[Map[Length, ans], 1]]  (* A272948 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]]  (* A000045 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]]  (* A271354 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]]  (* A272949 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]]  (* A272950 *)
    (* Peter J. C. Moses, May 11 2016 *)

Extensions

More terms from Rémy Sigrist, Mar 17 2019

A272950 Products of four distinct Fibonacci numbers > 1.

Original entry on oeis.org

240, 390, 624, 630, 1008, 1020, 1040, 1560, 1632, 1638, 1650, 1680, 2520, 2640, 2652, 2670, 2720, 2730, 4080, 4095, 4272, 4284, 4290, 4320, 4368, 4400, 4420, 6552, 6600, 6630, 6912, 6930, 6942, 6990, 7072, 7120, 7140, 7150, 10608, 10680, 10710, 10725, 10920
Offset: 1

Views

Author

Clark Kimberling, May 14 2016

Keywords

Examples

			a(1) = 240 = 2*3*5*8.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s =  Prepend[s, 0]; Take[s, 100]  (* A160009 *)
    isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
    ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
    Map[Length, ans] (* A272947 *)
    Flatten[Position[Map[Length, ans], 1]]  (* A272948 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]]  (* A000045 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]]  (* A271354 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]]  (* A272949 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]]  (* A272950 *)
    (* Peter J. C. Moses, May 11 2016 *)
    up=10^6; F=Fibonacci; i=3; Union[ Reap[ While[(a = F[i++]) < up, j=i; While[ (b = F[j++]*a) < up, h=j; While[(c = F[h++]*b) < up, k=h; While[ (d = F[k++]*c) < up, Sow@d ]]]]][[2, 1]]] (* Giovanni Resta, May 14 2016 *)
  • PARI
    list(lim)=my(v=List(),F,best=5,t2,t3,t4,j,k,l); while(fibonacci(best++)<=30*lim,); F=vector(best,i,fibonacci(i)); for(i=6,best, j=4; while(j++Charles R Greathouse IV, May 14 2016

A274353 Number of factors L(i) > 1 of A274280(n), where L = A000032 (Lucas numbers, 1,3,4,...)

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 3, 2, 2, 1, 2, 3, 2, 2, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 1, 2, 2, 3, 4, 3, 2, 3, 3, 2, 3, 2, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 3, 3, 2, 3, 3, 2, 2, 1, 2, 3, 2
Offset: 1

Author

Clark Kimberling, Jun 18 2016

Keywords

Examples

			The products of distinct Lucas numbers, arranged in increasing order, comprise A274280.  The list begins with 1, 3, 4, 7, 11, 12 = 3*4, so that a(6) = 2.
		

Programs

  • Mathematica
    r[1] := 1; r[2] := 3; r[n_] := r[n] = r[n - 1] + r[n - 2];
    s = {1}; z = 40; f = Map[r, Range[z]]; Take[f, 10]
    Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
    infQ[n_] := MemberQ[f, n];
    a = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[
    Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &,
    Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 200}];
    ans = Join[{{1}}, a]; Take[ans, 8]
    w = Map[Length, ans] (* A274353 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274347 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274348 *)
    (* Peter J. C. Moses, Jun 17 2016 *)

A274354 Number of factors L(i) > 1 of A274281(n), where L = A000032 (Lucas numbers, 2,1,3,4,..., with 1 excluded).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 3, 2, 1, 2, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 4, 3, 2, 2, 1, 2, 3, 2, 3, 3, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 2, 3, 3, 3, 2, 3, 4, 3, 4, 2, 3, 2, 1, 2, 2, 3, 3, 2, 3, 3, 4, 3, 2, 3, 4, 3
Offset: 1

Author

Clark Kimberling, Jun 18 2016

Keywords

Examples

			The products of distinct Lucas numbers (including 2, excluding 1), arranged in increasing order, comprise A274281 (with 1 removed).  The list begins with 2, 3, 4, 6 = 2*3, 7, 8 = 2*4, 11, 12, 14, 18, 21, 22, 24 = 2*3*4, so that a(4) = 2, a(6) = 2, a(13) = 3.
		

Programs

  • Mathematica
    r[1] := 2; r[2] := 1; r[n_] := r[n] = r[n - 1] + r[n - 2];
    s = {1}; z = 40; f = Join[{2}, Map[r, 2 + Range[z]]]; Take[f, 10]
    Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
    infQ[n_] := MemberQ[f, n];
    ans = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[
    Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &,
    Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 200}];
    Take[ans, 10]
    w = Map[Length, ans]
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274349 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274350 *)
    (* Peter J. C. Moses, Jun 17 2016 *)
Showing 1-5 of 5 results.