A272985 Numbers n such that the elements of the Collatz trajectory of n are exactly the same as the divisors of n.
1, 2, 4, 8, 16, 32, 64, 80, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1
Keywords
Examples
80 is in the sequence because 80 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1 with 9 iterations and the divisors of 80 are 1, 2, 4, 5, 8, 10, 16, 20, 40, 80.
Programs
-
Maple
with(numtheory):nn:=10000: for n from 1 to nn do: m:=n:it:=0:lst:={n}: for i from 1 to nn while(m<>1) do: if irem(m,2)=0 then m:=m/2: else m:=3*m+1: fi: it:=it+1:lst:=lst union {m}: od: x:=divisors(n):n0:=nops(x):lst1:={op(x),x[n0]}: lst2:=lst intersect lst1:n1:=nops(lst2): if it+1=n1 and n0=n1 then print(n): else fi: od:
Comments