cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273011 Numbers n such that d_i(n) >= d_i(k) for k = 1 to n-1, where d_i(n) is the number of infinitary divisors of n (A037445).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 24, 30, 40, 42, 54, 56, 60, 66, 70, 72, 78, 84, 88, 90, 96, 102, 104, 105, 108, 110, 114, 120, 168, 210, 216, 264, 270, 280, 312, 330, 360, 378, 384, 390, 408, 420, 440, 456, 462, 480, 504, 510, 520, 540, 546, 552, 570, 594, 600, 616
Offset: 1

Views

Author

Vladimir Shevelev, May 13 2016

Keywords

Comments

An infinitary (or Fermi-Dirac) analog of the Ramanujan sequence A067128.
Between the smallest number b_k which is product of k distinct terms of A050376 and b_(k+1) all terms are products of k distinct terms of A050376.
Thus every subsequence of terms, having in Fermi-Dirac factorization a fixed number of distinct factors from A050376, is finite.
These subsequences have cardinalities: 1, 4, 10, 21, 47, ...

Crossrefs

Programs

  • Mathematica
    a = {}; b = {0}; Do[If[# >= Max@b, AppendTo[a, k] && AppendTo[b, #]] &@ If[k == 1, 1, Times @@ Flatten@ Map[2^First@ DigitCount[#, 2] &, FactorInteger[k][[All, 2]]]], {k, 10^3}]; a (* Michael De Vlieger, May 13 2016, after Jean-François Alcover at A037445 *)