cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273020 a(n) = Sum_{k=0..n} C(n,k)*((-1)^n*(C(k,n-k)-C(k,n-k-1))+C(n-k,k+1)).

Original entry on oeis.org

1, 1, 3, 5, 19, 39, 141, 321, 1107, 2675, 8953, 22483, 73789, 190345, 616227, 1621413, 5196627, 13882947, 44152809, 119385663, 377379369, 1030434069, 3241135527, 8921880135, 27948336381, 77459553549, 241813226151, 674100041501, 2098240353907, 5878674505303, 18252025766941
Offset: 0

Views

Author

Peter Luschny, May 13 2016

Keywords

Crossrefs

Programs

  • Maple
    seq(simplify(hypergeom([-n,1/2],[2],4) + n*hypergeom([-n/2+1,-n/2+1/2],[2],4)), n=0..30);
  • Mathematica
    Table[ JacobiP[n, 1, -n-3/2, -7]/(n+1) + GegenbauerC[n-1,-n,-1/2], {n,0,30} ]
  • Sage
    def A():
        a, b, c, d, n = 0, 1, 1, -1, 1
        yield 1
        while True:
            yield d + b*(1-(-1)^n)
            n += 1
            a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1))
            c, d = d, (3*(n-1)*c-(2*n-1)*d)//n
    A273020 = A()
    print([next(A273020) for _ in range(31)])

Formula

a(n) = JacobiP(n, 1, -n-3/2, -7)/(n+1) + GegenbauerC(n-1, -n, -1/2), with a(0) = 1.
a(n) = hypergeom([-n,1/2], [2], 4) + n*hypergeom([-n/2+1,-n/2+1/2], [2], 4).
a(n) = (-1)^n*A005043(n) + A005717(n).
a(2*n) = A082758(n).
a(2*n+1) = A273019(n).