A273020 a(n) = Sum_{k=0..n} C(n,k)*((-1)^n*(C(k,n-k)-C(k,n-k-1))+C(n-k,k+1)).
1, 1, 3, 5, 19, 39, 141, 321, 1107, 2675, 8953, 22483, 73789, 190345, 616227, 1621413, 5196627, 13882947, 44152809, 119385663, 377379369, 1030434069, 3241135527, 8921880135, 27948336381, 77459553549, 241813226151, 674100041501, 2098240353907, 5878674505303, 18252025766941
Offset: 0
Keywords
Links
- A. Bostan and M. Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 (2008).
Programs
-
Maple
seq(simplify(hypergeom([-n,1/2],[2],4) + n*hypergeom([-n/2+1,-n/2+1/2],[2],4)), n=0..30);
-
Mathematica
Table[ JacobiP[n, 1, -n-3/2, -7]/(n+1) + GegenbauerC[n-1,-n,-1/2], {n,0,30} ]
-
Sage
def A(): a, b, c, d, n = 0, 1, 1, -1, 1 yield 1 while True: yield d + b*(1-(-1)^n) n += 1 a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1)) c, d = d, (3*(n-1)*c-(2*n-1)*d)//n A273020 = A() print([next(A273020) for _ in range(31)])