A273049 Palindromic primes with exactly three nonzero digits.
131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 30103, 30203, 30403, 30703, 30803, 70207, 70507, 70607, 90709, 1003001, 1008001, 3001003, 3002003, 3007003, 9002009, 100030001, 100050001, 100060001, 300020003
Offset: 1
Links
- James R. Buddenhagen and Giovanni Resta, Table of n, a(n) for n = 1..148 (terms < 10^1000, first 70 terms from J. R. Buddenhagen)
- Giovanni Resta, Compact representation of the terms up to 10^20000
Crossrefs
Subsequence of A002385.
Programs
-
Magma
[p: p in PrimesUpTo(100000000) | #[d: d in t[1..#t]| d ne 0] eq 3 and p eq Seqint(Reverse(t)) where t is Intseq(p)]; // Bruno Berselli, May 16 2016
-
Mathematica
Reap[ Do[ If[PrimeQ[p = e*(1+10^(2*n)) + m*10^n], Sow@p], {n, 99}, {e, {1, 3, 7, 9}}, {m, 9}]][[2, 1]] (* Giovanni Resta, May 14 2016 *)