A273090 Rectangular array A read by upward antidiagonals in which the entry A(n,k) in row k and column n gives the number of families of symmetric radially generated monohedral tilings of the disk (each tiling contains 2*(2*n+1)*k congruent tiles), k >= 1, n >= 1.
2, 62, 2, 116, 1532, 2, 200, 6402, 50830, 2, 318, 19884, 446930, 1855110, 2, 476, 51128, 2460462, 34121322, 71292624, 2, 682, 115188, 10106370, 332112068, 2741227176, 2833906726, 2, 946, 235180, 33905948, 2177193500, 47162138964
Offset: 1
Examples
Array begins: . 2 2 2 2 2 2 . 62 1532 50830 1855110 71292624 2833906726 . 116 6402 446930 34121322 2741227176 227759341712 . 200 19884 2460462 332112068 47162138964 6926365932512 . 318 51128 10106370 2177193500 493416845604 115646287581042 . 476 115188 33905948 10874491594 3668999040616 1280224897307324
Links
- Joel Haddley, Stephen Worsley, Infinite families of monohedral disk tilings, arXiv preprint arXiv:1512.03794v2 [math.MG], 2016.
Crossrefs
Cf. A047996.
Programs
-
Mathematica
a[1, n_] := 2; a[k_, n_] := 2*(1 + Sum[(1/i)*Sum[EulerPhi[d]*Binomial[(2*(2*n + 1) - i)*k/d + i/d - 1, i/d - 1], {d, Divisors[GCD[i, (2*(2*n + 1) - i)*k]]}], {i, 2*(2*n + 1)}]); (* Array: *) Grid[Table[a[k, n], {k, 6}, {n, 6}]] (* Or array antidiagonals flattened: *) Flatten[Table[a[k - n + 1, n], {k, 7}, {n, k}]]
Formula
A(1,n) = 2, A(k,n) = 2*Sum_{i=0..2*(2*n+1)}Sum_{d | i, d | (2*(2*n+1)-i)*k} (phi(d)/i)*binomial((2*(2*n+1)-i)*k/d+i/d-1, i/d-1), k >= 2, n >= 1 [Haddley, Worsley, Proposition 5.1].
Comments