cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273090 Rectangular array A read by upward antidiagonals in which the entry A(n,k) in row k and column n gives the number of families of symmetric radially generated monohedral tilings of the disk (each tiling contains 2*(2*n+1)*k congruent tiles), k >= 1, n >= 1.

Original entry on oeis.org

2, 62, 2, 116, 1532, 2, 200, 6402, 50830, 2, 318, 19884, 446930, 1855110, 2, 476, 51128, 2460462, 34121322, 71292624, 2, 682, 115188, 10106370, 332112068, 2741227176, 2833906726, 2, 946, 235180, 33905948, 2177193500, 47162138964
Offset: 1

Views

Author

L. Edson Jeffery, May 14 2016

Keywords

Comments

Enumeration is equivalent to counting beaded necklaces of a certain class (see A047996). For details and definitions, see the arXiv preprint by Haddley and Worsley.

Examples

			Array begins:
.    2       2         2            2              2                 2
.   62    1532     50830      1855110       71292624        2833906726
.  116    6402    446930     34121322     2741227176      227759341712
.  200   19884   2460462    332112068    47162138964     6926365932512
.  318   51128  10106370   2177193500   493416845604   115646287581042
.  476  115188  33905948  10874491594  3668999040616  1280224897307324
		

Crossrefs

Cf. A047996.

Programs

  • Mathematica
    a[1, n_] := 2; a[k_, n_] := 2*(1 + Sum[(1/i)*Sum[EulerPhi[d]*Binomial[(2*(2*n + 1) - i)*k/d + i/d - 1, i/d - 1], {d, Divisors[GCD[i, (2*(2*n + 1) - i)*k]]}], {i, 2*(2*n + 1)}]);
    (* Array: *)
    Grid[Table[a[k, n], {k, 6}, {n, 6}]]
    (* Or array antidiagonals flattened: *)
    Flatten[Table[a[k - n + 1, n], {k, 7}, {n, k}]]

Formula

A(1,n) = 2, A(k,n) = 2*Sum_{i=0..2*(2*n+1)}Sum_{d | i, d | (2*(2*n+1)-i)*k} (phi(d)/i)*binomial((2*(2*n+1)-i)*k/d+i/d-1, i/d-1), k >= 2, n >= 1 [Haddley, Worsley, Proposition 5.1].