cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273103 Sum of the elements of the difference triangle of the divisors of n (including the divisors of n).

Original entry on oeis.org

1, 4, 6, 11, 10, 21, 14, 26, 25, 31, 22, 52, 26, 41, 54, 57, 34, 86, 38, 66, 72, 61, 46, 103, 71, 71, 90, 102, 58, 205, 62, 120, 108, 91, 134, 157, 74, 101, 126, 75, 82, 329, 86, 174, 218, 121, 94, 110, 141, 158, 162, 210, 106, 373, 202, 269, 180, 151, 118, -437, 122, 161, 250
Offset: 1

Views

Author

Omar E. Pol, May 15 2016

Keywords

Comments

a(n) is the sum of the n-th slice of the tetrahedron A273102.
First differs from A187215 at a(14).

Examples

			For n = 14 the divisors of 14 are 1, 2, 7, 14, and the difference triangle of the divisors is
1 . 2 . 7 . 14
. 1 . 5 . 7
. . 4 . 2
. . .-2
The sum of all elements of the triangle is 1 + 2 + 7 + 14 + 1 + 5 + 7 + 4 + 2 - 2 = 41, so a(14) = 41.
Note that A187215(14) = 45.
		

Crossrefs

Programs

  • Mathematica
    Table[Total@ Flatten@ NestWhileList[Differences, Divisors@ n, Length@ # > 1 &], {n, 63}] (* Michael De Vlieger, May 17 2016 *)
  • PARI
    a(n) = {my(d = divisors(n)); my(s = vecsum(d)); for (k=1, #d-1, d = vector(#d-1, n, d[n+1] - d[n]); s += vecsum(d);); s;} \\ Michel Marcus, May 16 2016

Formula

a(n) = 2n, if n is prime.
a(2^k) = A125128(k+1), k >= 0.

Extensions

More terms from Michel Marcus, May 16 2016