A273103 Sum of the elements of the difference triangle of the divisors of n (including the divisors of n).
1, 4, 6, 11, 10, 21, 14, 26, 25, 31, 22, 52, 26, 41, 54, 57, 34, 86, 38, 66, 72, 61, 46, 103, 71, 71, 90, 102, 58, 205, 62, 120, 108, 91, 134, 157, 74, 101, 126, 75, 82, 329, 86, 174, 218, 121, 94, 110, 141, 158, 162, 210, 106, 373, 202, 269, 180, 151, 118, -437, 122, 161, 250
Offset: 1
Keywords
Examples
For n = 14 the divisors of 14 are 1, 2, 7, 14, and the difference triangle of the divisors is 1 . 2 . 7 . 14 . 1 . 5 . 7 . . 4 . 2 . . .-2 The sum of all elements of the triangle is 1 + 2 + 7 + 14 + 1 + 5 + 7 + 4 + 2 - 2 = 41, so a(14) = 41. Note that A187215(14) = 45.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Total@ Flatten@ NestWhileList[Differences, Divisors@ n, Length@ # > 1 &], {n, 63}] (* Michael De Vlieger, May 17 2016 *)
-
PARI
a(n) = {my(d = divisors(n)); my(s = vecsum(d)); for (k=1, #d-1, d = vector(#d-1, n, d[n+1] - d[n]); s += vecsum(d);); s;} \\ Michel Marcus, May 16 2016
Formula
a(n) = 2n, if n is prime.
a(2^k) = A125128(k+1), k >= 0.
Extensions
More terms from Michel Marcus, May 16 2016
Comments