cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273109 Numbers n such that in the difference triangle of the divisors of n (including the divisors of n) the diagonal from the bottom entry to n gives the divisors of n.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1

Views

Author

Omar E. Pol, May 15 2016

Keywords

Comments

Is this also the union of 12 and the powers of 2?
All powers of 2 are in the sequence.

Examples

			For n = 12 the difference triangle of the divisors of 12 is
1 . 2 . 3 . 4 . 6 . 12
. 1 . 1 . 1 . 2 . 6
. . 0 . 0 . 1 . 4
. . . 0 . 1 . 3
. . . . 1 . 2
. . . . . 1
The bottom entry is 1, and the diagonal from the bottom entry to 12 is [1, 2, 3, 4, 6, 12] hence the diagonal gives the divisors of 12, so 12 is in the sequence.
Note that for n = 12 and the powers of 2 the descending diagonals, from left to right, are symmetrics, for example: the first diagonal is 1, 1, 0, 0, 1, 1.
		

Crossrefs

Programs

  • Mathematica
    aQ[n_] := Module[{d=Divisors[n]}, nd = Length[d]; vd = d; ans = True; Do[ vd = Differences[vd]; If[Max[vd] != d[[nd-k]], ans=False; Break[]], {k,1,nd-1}]; ans]; Select[Range[100000], aQ] (* Amiram Eldar, Feb 23 2019 *)
  • PARI
    isok(n) = {my(d = divisors(n)); my(nd = #d); my(vd = d); for (k=1, nd-1, vd = vector(#vd-1, j, vd[j+1] - vd[j]); if (vecmax(vd) != d[nd-k], return (0));); return (1);} \\ Michel Marcus, May 16 2016

Extensions

a(12)-a(21) from Michel Marcus, May 16 2016
a(22)-a(35) from Amiram Eldar, Feb 23 2019