A273133 a(n) = n minus the bottom entry of the difference table of the divisors of n.
0, 1, 1, 3, 1, 4, 1, 7, 5, 10, 1, 11, 1, 16, 7, 15, 1, 6, 1, 31, 13, 28, 1, 36, 9, 34, 19, 31, 1, -20, 1, 31, 25, 46, 7, 47, 1, 52, 31, 106, 1, -62, 1, 31, 21, 64, 1, 151, 13, 66, 43, 31, 1, -34, 19, 8, 49, 82, 1, 727, 1, 88, 71, 63, 25, -6, 1, 31, 61, 148, 1, 12, 1, 106, 11, 31, 13, 22, 1, 439, 65, 118, 1, 1541
Offset: 1
Keywords
Examples
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, and the difference triangle of the divisors is: 1 . 2 . 3 . 6 . 9 . 18 . 1 . 1 . 3 . 3 . 9 . . 0 . 2 . 0 . 6 . . . 2 .-2 . 6 . . . .-4 . 8 . . . . . 12 The bottom entry is 12, so a(18) = 18 - 12 = 6.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Array[# - First@ NestWhile[Differences, Divisors@ #, Length@ # > 1 &] &, 84] (* Michael De Vlieger, May 20 2016 *)
-
PARI
a(n) = my(d=divisors(n));n-sum(i=1,#d,binomial(#d-1,i-1)*(-1)^(#d-i)*d[i]) \\ David A. Corneth, May 20 2016
-
Sage
def A273133(n): D = divisors(n) T = matrix(ZZ, len(D)) for (m, d) in enumerate(D): T[0, m] = d for k in range(m-1, -1, -1) : T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k] return n - T[len(D)-1, 0] print([A273133(n) for n in range(1, 85)]) # Peter Luschny, May 18 2016
Comments