cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273167 Numerators of coefficient triangle for expansion of x^(2*n) in terms of Chebyshev polynomials of the first kind T(2*m, x) (A127674).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 5, 15, 3, 1, 35, 7, 7, 1, 1, 63, 105, 15, 45, 5, 1, 231, 99, 495, 55, 33, 3, 1, 429, 3003, 1001, 1001, 91, 91, 7, 1, 6435, 715, 1001, 273, 455, 35, 15, 1, 1, 12155, 21879, 1989, 4641, 1071, 765, 51, 153, 9, 1, 46189, 20995, 62985, 4845, 4845, 969, 4845, 285, 95, 5, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jun 12 2016

Keywords

Comments

The denominator triangle is given in A273168.
The expansion is x^(2*n) = Sum_{m=0..n} R(n, m)*Tnx(2*m, x), n >= 0, with the rational triangle R(n, m) = a(n, m)/A273168(n, m).
Compare this with A127673.
This is equivalent to the expansion cos(x)^(2n) = Sum_{m=0..n} R(n, m)*cos(2*m*x), n >= 0. Compare this with the even numbered rows of A273496.
See A244420/A244421 for the expansion of x^(2*n+1) in terms of odd-indexed Chebyshev polynomials of the first kind.
The signed rational triangle S(n, m) = R(n, m) * (-1)^m appears in the expansion sin(x)^(2n) = Sum_{m=0..n} S(n, m) * cos(2*m*x), n >= 0. This is equivalent to the identity (1-x^2)^n = Sum_{m=0..n} S(n, m) * T(2*m, x).

Examples

			The triangle a(n, m) begins:
n\m     0     1    2    3    4   5  6   7 8 9
0:      1
1:      1     1
2:      3     1    1
3:      5    15    3    1
4:     35     7    7    1    1
5:     63   105   15   45    5   1
6:    231    99  495   55   33   3  1
7:    429  3003 1001 1001   91  91  7   1
8:   6435   715 1001  273  455  35 15   1 1
9:  12155 21879 1989 4641 1071 765 51 153 9 1
...
The rational triangle R(n, m) begins:
n\m  0       1      2     3      4     5  ...
0:   1
1:  1/2     1/2
2:  3/8     1/2    1/8
3:  5/16   15/32   3/16  1/32
4: 35/128   7/16   7/32  1/16  1/128
5: 63/256 105/256 15/64 45/512 5/256 1/512
...
row 6: 231/1024 99/256 495/2048 55/512 33/1024 3/512 1/2048,
row 7: 429/2048 3003/8192 1001/4096 1001/8192 91/2048 91/8192 7/4096 1/8192,
row 8: 6435/32768 715/2048 1001/4096 273/2048 455/8192 35/2048 15/4096 1/2048 1/32768,
row 9: 12155/65536 21879/65536 1989/8192 4641/32768 1071/16384 765/32768 51/8192 153/131072 9/65536 1/131072,
...
n=3: x^6 = (5/16)*T(0, x) + (15/32)*T(2, x)
  +(3/16)*T(4, x) + (1/32)*T(6,x).
  cos^6(x) = (5/16) + (15/32)*cos(2*x) +
    (3/16)*cos(4*x) + (1/32)*cos(6*x).
  sin^6(x) = (5/16) - (15/32)*cos(2*x) +
    (3/16)*cos(4*x) - (1/32)*cos(6*x).
		

Crossrefs

Programs

  • Mathematica
    T[MaxN_] := Function[{n}, With[{exp = Expand[(1/2)^(2 n) (Exp[I x] + Exp[-I x])^(2 n)]}, Prepend[ 2 Coefficient[exp, Exp[I 2 # x]] & /@ Range[1, n], exp /. {Exp[_] -> 0}]]][#] & /@ Range[0, MaxN];
    T[5] // ColumnForm
    T2[MaxN_] := Table[Inverse[Outer[Coefficient[#1, x, #2] &, Prepend[ChebyshevT[#, x] & /@ Range[2 MaxN], 1], Range[0, 2 MaxN]]][[n, m]], {n, 1, 2 MaxN, 2}, {m, 1, n, 2}]
    T2[6] // ColumnForm (* Bradley Klee, Jun 14 2016 *)
  • PARI
    a(n, m) = if (m == 0, numerator((1/2^(2*n-1)) * binomial(2*n,n)/2), numerator((1/2^(2*n-1))*binomial(2*n, n-m)));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(a(n,k), ", ")); print()); \\ Michel Marcus, Jun 19 2016

Formula

a(n, m) = numerator(R(n, m)), n >= 0, m = 1, ..., n, with the rationals R(n, m) given by R(n, 0) = (1/2^(2*n-1))*binomial(2*n,n)/2 and R(n ,m) = (1/2^(2*n-1))*binomial(2*n, n-m) for m =1..n, n >= 0.